1.

Gad-el-Hak M (2002) The MEMS Handbook. CRC Press LLC, Boca Raton Google Scholar

2.

Elwenspoek M, Jansen H (1998) Silicon Micromachining. Cambridge University Press, UK Google Scholar

3.

Takahata K (2013) Advances in Micro/Nano Electromechanical Systems and Fabrication Technologies. Publisher: InTech. Google Scholar

4.

Frühauf J (2005) Shape and functional elements of the bulk silicon microtechnique: a manual of wet-etched silicon structures. Springer. Google Scholar

5.

Lindroos V, Tilli M, Lehto A, Motooka T (2010) Handbook of Silicon Based MEMS Materials and Technologies. William Andrew Publishing. Google Scholar

6.

Hsu TR (2003) MEMS & Microsystems: Design and Manufacture. Tata McGraw-Hill Publishing Company Ltd, New Delhi, India Google Scholar

7.

Madou MJ (2002) Fundamentals of Microfabrication: The Science of Miniaturization, 2nd edn. CRC Press, Boca Raton, US Google Scholar

8.

Varadan VK (2006) Smart Material Systems and MEMS: Design and Development Methodologies. John Wiley & Sons Ltd. Google Scholar

9.

Bustillo JM, Howe RT, Muller RS (1998) Surface micromachining for microelectromechanical systems. IEEE Proc 86:1552–74 Google Scholar

10.

Kovacs GT, Maluf NI, Petersen KE (1998) Bulk micromachining of silicon. IEEE Proc 86:1536–1351 Google Scholar

11.

Petersen KE (1982) Silicon as a mechanical material. IEEE Proc 70:420–457 Google Scholar

12.

Lang W (1996) Silicon microstructuring technology. Materials Science and Engineering: R: Reports 17:1–55 Google Scholar

13.

Jansen H, Gardeniers H, Boer MD, Elwenspoek M, Fluitman J (1996) A survey on the reactive ion etching of silicon in microtechnology. J Micromech Microeng 6:14–28 Google Scholar

14.

Oehrlein GS (1990) Reactive Ion Etching. In: Rossnagel SM, Westwood WD, Haber JJ (eds) Handbook of Plasma Processing Technology-Fundamentals, Etching, Deposition, and Surface Interactions. NJ: Noyes, Park Ridge Google Scholar

15.

Coburn JW, Winters HF (1979) Plasma etching-a discussion of mechanisms. J Vac Sci Technol 16:391–403 Google Scholar

16.

Larmer F, Schilp P (1994) Method of anisotropically etching silicon, German Patent DE 4 241 045. Google Scholar

17.

Jiang E, Keating A, Martyniuk M, Prasad K, Faraone L, Jiang JM (2012) Characterization of low-temperature bulk micromachining of silicon using an SF_{6}/O_{2} inductively coupled plasma. J Micromech Microeng 22:095005 (10pp) Google Scholar

18.

Hynes AM, Ashraf H, Bhardwaj JK, Hopkins J, Johnston I, Shepherd JN (1999) Recent advances in silicon etching for MEMS using the ASE process. Sens Actuators A 74:13–17 Google Scholar

19.

Teng J, Prewett PD (2005) Focused ion beam fabrication of thermally actuated bimorph cantilevers. Sens Actuators A 123–124:608–613 Google Scholar

20.

Walker CK, Narayanan G, Knoepfle H, Capara J, Glenn J, Hungerford A, Bloomstein TM, Palmacci ST, Stern MB, Curtin JE (1997) Laser micromachining of silicon: a new technique for fabricating high quality terahertz waveguide components. In: Proc. 8^{th} International Symposium on Space Terahertz Technology. Harvard University, Cambridge, USA, 25-27 March 1997, p 358. http://www.nrao.edu/meetings/isstt/papers/1997/1997358376.pdf Google Scholar

21.

Schwartz B, Robbins H (1976) Chemical etching of silicon. J Electrochem Soc 123(12):1903–1909 Google Scholar

22.

Zandi K, Arzi E, Izadi N, Mohajerzadeh S, Haji S, Abdi Y, Asl Soleimani E (2006) Study of bulk micromachining for <100> silicon. Eur Phys J Appl Phys 35:7–12 Google Scholar

23.

Lee DB (1969) Anisotropic etching of silicon. J Appl Phys 40:4569–4575 Google Scholar

24.

Bean KE (1978) Anisotropic etching of silicon. IEEE Trans Electron Devices ED-25:1185–1193 Google Scholar

25.

Seidel H, Csepregi L, Heuberger A, Baumgartel H (1990) Anisotropic etching of crystalline silicon in alkaline solutions I: Orientation dependence and behavior of passivation layers. J Electrochem Soc 137(11):3612–3626 Google Scholar

26.

Seidel H, Csepregi L, Heuberger A, Baumgartel H (1990) Anisotropic etching of crystalline silicon in alkaline solutions II: Influence of Dopants. J Electrochem Soc 137:3626–3632 Google Scholar

27.

Tabata O, Asahi R, Funabashi H, Shimaoka K, Sugiyama S (1992) Anisotropic etching of silicon in TMAH solutions. Sens Actuators A 34(1):51–57 Google Scholar

28.

Sato K, Shikida M, Matsushima Y, Yamashiro T, Asaumi K, Iriye Y, Yamamoto M (1998) Characterization of orientation-dependent etching properties of single-crystal silicon: effects of KOH concentration. Sens Actuators A 61:87–93 Google Scholar

29.

Sato K, Shikida M, Yamashiro T, Tsunekawa M, Ito S (1999) Roughening of single-crystal silicon surface etched by KOH water solution. Sens Actuators A 73:122–130 Google Scholar

30.

Powell O, Harrison HB (2001) Anisotropic etching of {100} and {110} planes in (100) silicon. J Micromech Microeng 11:217–220 Google Scholar

31.

Tanaka H, Yamashita S, Abe Y, Shikida M, Sato K (2004) Fast etching of silicon with a smooth surface in high temperature ranges near the boiling point of KOH solution. Sens Actuators A 114:516–520 Google Scholar

32.

Matsuoka M, Yoshida Y, Moronuki M (1992) Preparation of silicon thin diaphragms free from micropyramids using anisotropic etching in KOH solution. J Chem Eng 25:735–740 Google Scholar

33.

Baryeka I, Zubel I (1995) Silicon anisotropic etching in KOH-isopropanol etchant. Sens Actuators A 48:229–238 Google Scholar

34.

Shikida M, Sato K, Tokoro K, Uchikawa D (2000) Differences in anisotropic etching properties of KOH and TMAH solutions. Sens Actuators A 80:179–188 Google Scholar

35.

Backlund Y, Rosengren L (1992) New shapes in (100) Si using KOH and EDP etches. J Micromech Microeng 27:5–9 Google Scholar

36.

Sato K, Shikida M, Yamashiro T, Asaumi K, Iriye Y, Yamamoto M (1999) Anisotropic etching rates of single-crystal silicon for TMAH water solution as a function of crystallographic orientation. Sens Actuators A 73:131–137 Google Scholar

37.

Cheng D, Gosalvez MA, Hori T, Sato K, Shikida M (2006) Improvement in smoothness of anisotropically etched silicon surfaces: Effects of surfactant and TMAH concentrations. Sens Actuators A 125:415–421 Google Scholar

38.

Pal P, Sato K, Gosalvez MA, Tang B, Hida H, Shikida M (2011) Fabrication of novel microstructures based on orientation dependent adsorption of surfactant molecules in TMAH solution. J Micromech Microeng 21(1):015008, 11pp Google Scholar

39.

Pal P, Sato K (2010) Fabrication methods based on wet etching process for the realization of silicon MEMS structures with new shapes. Microsystem Technologies 16(7):1165–1174 Google Scholar

40.

Gosalvez MA, Tang B, Pal P, Sato K, Kimura Y, Ishibashi K (2009) Orientation and concentration dependent surfactant adsorption on silicon in aqueous alkaline solutions: explaining the changes in the etch rate, roughness and undercutting for MEMS applications. J Micromech Microeng 19(12):125011, 18pp Google Scholar

41.

Yan G, Chan Philip CH, Hsing IM, Sharma RK, Sin JKO, Wang Y (2001) An improved TMAH Si-etching solution without attacking exposed aluminum. Sens Actuators A 89:135–141 Google Scholar

42.

Chen PH, Peng HY, Hsieh CM, Chyu MK (2001) The characteristic behavior of TMAH water solution for anisotropic etching on both Silicon substrate and SiO_{2} layer. Sens Actuators A 93(2):132–137 Google Scholar

43.

Tellier CR, Charbonnieras AR (2003) Characterization of the anisotropic chemical attack of (hhl) silicon plates in a TMAH 25 wt% solution: micromachining and adequacy of the dissolution slowness surface. Sens Actuators A 105:62–75 Google Scholar

44.

Zhang J, Hon WC, Leung LLW, Chen KJ (2005) CMOS-compatible micromachining techniques for fabricating high-performance edge-suspended RF/microwave passive components on silicon substrates. J Micromech Microeng 15:328–335 Google Scholar

45.

Steinsland E, Finstad T, Hanneborg A (2000) Etch rates of (100), (111), and (110) single-crystal silicon in TMAH measured in situ by laser reflectance interferometry. Sens Actuators A 86:73–80 Google Scholar

46.

Wu MP, Wu QH, Ko WH (1986) A study on deep etching of silicon using ethylenediamine-pyrocatechol-water. Sens Actuators A 9:333–343 Google Scholar

47.

Reisman A, Berkenblit M, Chan SA, Kaufmann FB, Green DC (1979) The controlled etching of silicon in catalyzed ethylene-diamine-pyrochatechol-water solutions. J Electrochem Soc: Solid-State Sci Technol 126:1406–15 Google Scholar

48.

Kern W (1978) Chemical etching of silicon, germanium, gallium arsenide, and gallium phosphide. RCA Review 39:278–307 Google Scholar

49.

Declercq MJ, Gerzberg L, Meindl JD (1975) Optimization of the hidrazine-water solution for anisotropic etching of silicon in integrated circuit technology. J Electrochem Soc: Solid State Science 122:545–552 Google Scholar

50.

Schnakenberg U, Benecke W, Lochel B (1990) NH_{4}OH-based etchant for silicon micromachining. Sens Actuators A 23:1031–1035 Google Scholar

51.

Clarck LD Jr, Lund JL, Edell DJ (1988) Cesium hydroxide (CsOH): A useful etchant for micromachining silicon. In: Tech. Digest, IEEE Solid State Sensor and Actuator Workshop (Hilton Head Island, SC, 6-9 June 1988) pp 5–8. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=26419 Google Scholar

52.

Robertson SV, Katehi LPB, Rebeiz GM (1996) Micromachined w-band filters. IEEE Transactions on Microwave Theory and Techniques 44:598–606 Google Scholar

53.

Blondy P, Brown AR, Cros D, Rebeiz GM (1998) Low loss micromachined filters for millimeter-wave communication systems. IEEE Trans Microwave Theory Tech 46:2308–2316 Google Scholar

54.

Papapolymerou I, Drayton RF, Katehi LPB (1998) Micromachined patch antennas. IEEE Transactions on Antennas and Propagation 46:275–83 Google Scholar

55.

Rebeiz G M (2003) RF MEMS: Theory, Design, and Technology. John Wiley & Sons Inc. Google Scholar

56.

Burrer C, Esteve J, Lora-Tamayo E (1996) Resonant silicon accelerometers in bulk micromachining technology-An approach. J Microelectromech Syst 5:122–130 Google Scholar

57.

Yu JC, Lan CB (2001) System modelling of microaccelerometer using piezoelectric thin films. Sens Actuators A 88:178–186 Google Scholar

58.

Wur DR, Davidson JL, Kang WP, Kinser DL (1995) Polycrystalline diamond pressure sensor. J Microelectromech Syst 4:34–41 Google Scholar

59.

Wang CC, Gogoi BP, Monk DJ, Mastrangelo CH (2000) Contamination-insensitive differential capacitive pressure sensors. J Microelectromech Syst 9:538–543 Google Scholar

60.

Bae B, Flachsbart BR, Park K, Shannon MA (2004) Design optimization of a piezoresistive pressure sensor considering the output signal-to-noise ratio. J Micromech Microeng 14:1597–1607 Google Scholar

61.

Yang H, Bao M, Yin H, Shen S (2002) A novel bulk micromachined gyroscope based on a rectangular beam-mass structure. Sens Actuators A 96:145–151 Google Scholar

62.

Van Herwaarden AW, Van Duyn DC, Van Oudheusden BW, Sarro PM (1989) Integrated thermopile sensors. Sens Actuators A 22:621–630 Google Scholar

63.

Sarro PM, van Hexwaarden AW, van der Vlist W (1994) A silicon-silicon nitride membrane fabrication process for smart thermal sensors. Sens Actuators A 41–42:666–671 Google Scholar

64.

Dillner U, Kessler E, Poser S, Baier V, Mtiller J (1997) Low power consumption thermal gas-flow sensor based on thermopiles of highly effective thermoelectric materials. Sens Actuators A 60:1–4 Google Scholar

65.

Olson EA, Efremov MY, Zhang M, Zhang Z, Allen LH (2003) The design and operation of a MEMS differential scanning nanocalorimeter for high-speed heat capacity measurements of ultrathin films. J Microelectromech Syst 12:355–364 Google Scholar

66.

Winter W, Hohne GWH (2003) Chip-calorimeter for small samples. Thermochimica Acta 403:43–53 Google Scholar

67.

Zhang Y, Tadigadapa S (2004) Calorimetric biosensors with integrated microfluidic channels. Biosensors and Bioelectronics 19:1733–1743 Google Scholar

68.

Koch M, Schabmueller CGJ, Evans AGR, Brunnschweiler A (1999) Micromachined chemical reaction system. Sens Actuators A 74:207–210 Google Scholar

69.

Kwon JW, Kim ES (2002) Multi-level microfluidic channel routing with protected convex corners. Sens Actuators A 97–98:729–733 Google Scholar

70.

Pal P, Sato K (2009) Various shapes of silicon freestanding microfluidic channels and microstructures in one step lithography. J Micromech Microeng 19(5):055003 (11pp) Google Scholar

71.

Kwon JW, Yu H, Kim ES (2005) Film transfer and bonding techniques for covering single-chip ejector array with microchannels and reservoirs. J Microelectromech Syst 14(6):1399–1408 Google Scholar

72.

Vashist SK (2007) A review of microcantilevers for sensing applications. AZoJono – Journal of. Nanotechnology 3:1–15 Google Scholar

73.

Wee KW, Kang GY, Park J, Kang JY, Yoon DS, Parkb JH, Kim TS (2005) Novel electrical detection of label-free disease marker proteins using piezoresistive self-sensing micro-cantilevers. Biosensors and Bioelectronics 20:1932–1938 Google Scholar

74.

Lee JH, Hwang KS, Park J, Yoon KH, Yoon DS, Kim TS (2005) Immunoassay of prostate-specific antigen (PSA) using resonant frequency shift of piezoelectric nanomechanical microcantilever. Biosensors and Bioelectronics 20:2157–62 Google Scholar

75.

Battiston FM, Ramseyer JP, Lang HP, Baller MK, Gerber C, Gimzewski JK, Meyer E, Guntherodt HJ (2001) A chemical sensor based on a microfabricated cantilever array with simultaneous resonance frequency and bending readout. Sens Actuators B 77:122–131 Google Scholar

76.

Neuzil P, Nagarajan R (2006) The formation of sharp AFM tips by single step etching. J Micromech Microeng 16:1298–1300 Google Scholar

77.

Burt DP, Dobson PS, Donaldson L, Weaver JMR (2008) A simple method for high yield fabrication of sharp silicon tips. Microelectronic Engineering 85:625–630 Google Scholar

78.

Han J, Lu S, Li Q, Li X, Wang J (2009) Anisotropic wet etching silicon tips of small opening angle in KOH solution with the additions of I2/KI. Sens Actuators A 152:75–79 Google Scholar

79.

Pal P, Singh SS (2013) A new model for the etching characteristics of corners formed by Si{111} planes on Si{110} wafer surface. Engineering 5(11):1–8 Google Scholar

80.

Trieu HK, Mokwa W (1998) A generalized model describing corner undercutting by the experimental analysis of TMAH/IPA. J Micromech Microeng 8:80–83 Google Scholar

81.

Chahoud M, Wehmann HH, Schlachetzki A (1998) Etching simulation of convex and mixed InP and Si structures. Sens Actuators A 69:251–258 Google Scholar

82.

Schroder H, Obermeier E (2000) A new model for Si{100} convex corner undercutting in anisotropic KOH etching. J Micromech Microeng 10:163–170 Google Scholar

83.

Shikida M, Nanbara K, Koizumi T, Sasaki H, Sato K, Odagaki M, Ando M, Furuta S, Asaumi K (2000) A Model explaining mask-corner undercut phenomena in anisotropic silicon etching: a saddle point in the etching-rate diagram. Sens Actuators A 97–98:758–63 Google Scholar

84.

Chang Chien WT, Chang CO, Lo YC, Li ZW, Chou CS (2005) On the Miller-indices determination of Si{100} convex corner undercut planes. J Micromech Microeng 15:833–842 Google Scholar

85.

Merlos A, Acero MC, Bao MH, Bausells J, Esteve J (1992) A study of the undercutting characteristics in the TMAH:IPA system. J Micromech Microeng 2:181–183 Google Scholar

86.

Dong W, Zhang X, Liu C, Li M, Xu B, Chen W (2004) Mechanism for convex corner undercutting of (110) silicon in KOH. Microelectronics J 35:417–419 Google Scholar

87.

Pal P, Singh SS (2013) A simple and robust model to explain convex corner undercutting in wet bulk micromachining. Micro and Nano Systems Letters 1(1):1–6 Google Scholar

88.

Bean KE, Runyan WR (1977) Dielectric isolation: comprehensive, current and future. J Electrochem Soc 124:5C–12C Google Scholar

89.

Abu-Zeid M (1984) Corner undercutting in anisotropically etched isolation contours. J Electrochem Soc 131:2138–2142 Google Scholar

90.

Wu XP, Ko WH (1989) Compensating corner undercutting in anisotropic etching of (100) silicon. Sens Actuators A 18:207–215 Google Scholar

91.

Puers B, Sansen W (1990) Compensation structures for convex corner micromachining in silicon. Sens Actuators A 23:1036–1041 Google Scholar

92.

Mayer GK, Offereins HL, Sandmaier H, Kuhl K (1990) Fabrication of non-underetched convex corners in anisotropic etching of (100) silicon in aqueous KOH with respect to novel micromechanic elements. J Electrochem Soc 137:3947–3951 Google Scholar

93.

Offereins HL, Kühl K, Sandmaier H (1991) Methods for the fabrication of convex corners in anisotropic etching of (100) silicon in aqueous KOH. Sens Actuators A 25:9–13 Google Scholar

94.

Sandmaier H, Offereins HL, Kuhl K, Lang W (1991) Corner compensation techniques in anisotropic etching of (100)-silicon using aqueous KOH. In: 6^{th} International Conference on Solid State Sensors and Actuators (Transducers 91, San Francisco, CA, 24-27 June 1991) pp 456–459. http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=148910&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel2%2F505%2F3940%2F00148910.pdf%3Farnumber%3D148910 Google Scholar

95.

Hui WC (1991) Technique for protecting chip corners in wet chemical etching of silicon wafers. Technical Report Lawrence Livermore National Lab, CA (United States) Google Scholar

96.

Offereins HL, Sandmaier H, Marusczyk K, Kuhl K, Plettner A (1992) Compensating corner undercutting of (100) silicon in KOH. Sensors and Materials 3:127–144 Google Scholar

97.

Bao M, Chr B, Esteve J, Bausells J, Marco S (1993) Etching front control of <110> strips for corner compensation. Sens Actuators A 37–38:727–732 Google Scholar

98.

Scheibe C, Obermeier E (1995) Compensating corner undercutting in anisotropic etching of (100) silicon for chip separation. J Micromech Microeng 5:109–111 Google Scholar

99.

Kampen RP, Wolffenbuttel RF (1995) Effects of <110>−oriented corner compensation structures on membrane quality and convex corner integrity in (100)-silicon using aqueous KOH. J Micromech Microeng 5:91–94 Google Scholar

100.

Zhang Q, Liu L, Li Z (1996) A new approach to convex corner compensation for anisotropic etching of (100) Si in KOH. Sens Actuators A 56:251–254 Google Scholar

101.

Enoksson P (1997) New structure for corner compensation in anisotropic KOH etching. J Micromech Microeng 7:141–144 Google Scholar

102.

Chung CK, Lee CC, Wu CY (1998) A novel approach to corner compensation of multistep Si(100) terraced structure for microlens. IEEE/LEOS summer topical meeting, Monterey, CA Google Scholar

103.

Long M K, Burdick J W, Antonsson E K (1999) Design of compensation structures for anisotropic etching. In: Technical Proceedings of the 1999 International Conference on Modeling and Simulation of Microsystems (MSM 99). Google Scholar

104.

Ma L (2001) Robust mask-layout and process synthesis in micro-electro-mechanical-systems (MEMS) using genetic algorithms. Ph.D. Thesis California Institute of Technology Pasadena, California Google Scholar

105.

Tellier C (2003) CAD design of mask compensation patterns. Proc IEEE Sensors 1:517–522 Google Scholar

106.

Wacogne B, Sadani Z, Gharbi T (2004) Compensation structures for V-grooves connected to square apertures in KOH-etched (100) silicon: theory, simulation and experimentation. Sens Actuators A 112:328–339 Google Scholar

107.

Fan W, Zhang D (2006) A simple approach to convex corner compensation in anisotropic KOH etching on a (100) silicon wafer. J Micromech Microeng 16:1951–1957 Google Scholar

108.

Mukhiya R, Bagolini A, Margesin B, Zen M, Kal S (2006) <100>bar corner compensation for CMOS compatible anisotropic TMAH etching. J Micromech Microeng 16:2458–2462 Google Scholar

109.

Pal P, Sato K, Chandra S (2007) Fabrication techniques of convex corners in a (100)-silicon wafer using bulk micromachining: a review. J Micromech Microeng 17:R1–R23 Google Scholar

110.

Biswas K, Das S, Kal S (2006) Analysis and prevention of convex corner undercutting in bulk micromachined silicon microstructures. Microelectronics J 37:765–769 Google Scholar

111.

Pal P, Chandra S (2004) Recessed microstructures with perfect convex corners for accelerometers. Sensor Letters 2:226–231 Google Scholar

112.

Pal P, Chandra S (2004) A novel process for perfect convex corner realization in bulk micromachining. J Micromech Microeng 14:1416–1420 Google Scholar

113.

Kawakatsu H, Saya D, Kato A, Fukushima K, Toshiyoshi H, Fujita H (2002) Millions of cantilevers for atomic force microscopy. Review of Scientific Instruments 73(3):1188–1192 Google Scholar

114.

Chu HY, Fang W (2004) A vertical convex corner compensation and non {111} crystal planes protection for wet anisotropic bulk micromachining process. J Micromech Microeng 14:806–813 Google Scholar

115.

Jia C, Dong W, Liu C, Zhang X, Zhou J, Zhong Z, Xue H, Zang H, Xu B, Chen W (2006) Convex corners undercutting and rhombus compensation in KOH with and without IPA solution on (110) silicon. Microelectronics J 37:1297–1301 Google Scholar

116.

Kim B, Cho DD (1998) Aqueous KOH etching of silicon (110) etch characteristics and compensation methods for convex corners. J Electrochem Soc 145:2499–508 Google Scholar

117.

Ciarlo DR (1987) Corner compensation structures for (110)-oriented silicon. Proc. IEEE Micro Robots and Teleoperators Workshop, Hyannis, MA, USA Google Scholar

118.

Wacogne B, Zeggari R, Sadani Z, Gharbi T (2006) A very simple compensation technique for bent V-grooves in KOH etched (100) silicon when thin structures or deep etching are required. Sens Actuators A 126:264–269 Google Scholar

119.

Kummamuru RK, Hu L, Cook L, Efremov MY, Olson EA, Allen LH (2008) A close proximity self-aligned shadow mask for sputter deposition onto a membrane or cavity. J Micromech Microeng 18:095027 (9pp) Google Scholar

120.

Pal P, Sato K, Shikida M, Gosalvez MA (2009) Study of corner compensating structures and fabrication of various shapes of MEMS structures in pure and surfactant added TMAH. Sens Actuators A 154:192–203 Google Scholar

121.

Yu JC (2011) Convex comer compensation for a compact seismic mass with high aspect ratio using anisotropic wet etching of (100) silicon. In: Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS (DTIP-11, Aix-en-Provence, France, 11-13 May, 2011) pp 197–199. http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6107993&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F6095278%2F6107967%2F06107993.pdf%3Farnumber%3D6107993 Google Scholar

122.

Mukhiya R, Bagolini A, Bhattacharya TK, Lorenzelli L, Zen M (2011) Experimental study and analysis of corner compensation structures for CMOS compatible bulk micromachining using 25wt% TMAH. Microelectronics J 42:127–134 Google Scholar

123.

Bagolini A, Faes A, Decarli M (2010) Influence of etching potential on convex corner anisotropic etching in TMAH solution. J Microelectromech Syst 19(5):1254–1259 Google Scholar

124.

Smiljanic MM, Jovic V, Lazic Z (2012) Maskless convex corner compensation technique on a (100) silicon substrate in a 25 wt% TMAH water solution. J Micromech Microeng 22:115011 (11pp) Google Scholar

125.

Shayan M, Arezoo B, Vanini AS, Kotamjani AA (2011) Silicon (100) undercutting modelling and corner compensation structures design in wet anisotropic etching process. Proc. IMechE Part B: J. Engineering Manufacture 225:1041–1049. http://pib.sagepub.com/content/225/7/1041.abstract Google Scholar

126.

Apanius M, Kaul B, Abramsona AR (2007) Silicon shadow mask fabrication for patterned metal deposition with microscale dimensions using a novel corner compensation scheme. Sens Actuators A 140:168–175 Google Scholar

127.

Giousouf M, Assmus F, Kuck H (1999) Structuring of convex corners using a reoxidation process-application to a tuning fork resonator made from (110)-silicon. Sensors and Actuators A 76:416–424 Google Scholar

128.

Pal P, Gosalvez MA, Sato K, Hida H, Xing Y (2014) Anisotropic etching on Si{110}: Experiment and simulation for the formation of microstructures with convex corners. J Micromech Microeng 24:125001 (25pp) Google Scholar

129.

Cho WJ, Chin WK, Kuo CT (2004) Effects of alcoholic moderators on anisotropic etching of silicon in aqueous potassium hydroxide solutions. Sens Actuators A 116:357–368 Google Scholar

130.

Zubel I, Kramkowska M (2004) Etch rates and morphology of silicon (hkl) surfaces etched in KOH and KOH saturated with isopropanol solutions. Sens Actuators A 115:549–556 Google Scholar

131.

Philipsen HGG, Kelly JJ (2009) Influence of chemical additives on the surface reactivity of Si in KOH solution. Electrochimica Acta 54:3526–3531 Google Scholar

132.

Zubel I, Kramkowska M (2001) The effect of isopropyl alcohol on etching rate and roughness of (100) Si surface etched in KOH and TMAH solutions. Sensors and Actuators A 93:138-147. http://www.sciencedirect.com/science/article/pii/S0924424701006483 Google Scholar

133.

Zubel I, Kramkowska M (2002) The effect of alcohol additives on etching characteristics in KOH solutions. Sens Actuators A 101:255–261 Google Scholar

134.

Pal P, Gosalvez MA, Sato K (2010) Silicon micromachining based on surfactant-added tetramethyl ammonium hydroxide: etching mechanism and advanced application. Japan J Appl Phys 49:056702 (9pp) Google Scholar

135.

Gosalvez MA, Pal P, Tang B, Sato K (2010) Atomistic mechanism for the macroscopic effects induced by small additions of surfactants to alkaline etching solutions. Sens Actuators A 157:91–95 Google Scholar

136.

Tang B, Pal P, Gosalvez MA, Shikida M, Sato K, Amakawa H, Itoh S (2009) Ellipsometry study of the adsorbed surfactant thickness on Si{110} and Si{100} and the effect of pre-adsorbed surfactant layer on etching characteristics in TMAH. Sens Actuators A 156:334–341 Google Scholar

137.

Pal P, Sato K, Gosalvez MA, Kimura Y, Ishibashi K, Niwano M, Hida H, Tang B, Itoh S (2009) Surfactant adsorption on single crystal silicon surfaces in TMAH solution: orientation-dependent adsorption detected by in-situ infra-red spectroscopy. J Microelectromech Syst 18:1345–1356 Google Scholar

138.

Yang CR, Chen PY, Yang CH, Chiou YC, Lee RT (2005) Effects of various ion-typed surfactants on silicon anisotropic etching properties in KOH and TMAH solutions. Sens Actuators A 119:271–281 Google Scholar

139.

Yang CR, Yang CH, Chen PY (2005) Study on anisotropic silicon etching characteristics in various surfactant-added tetramethyl ammonium hydroxide water solutions. J Micromech Microeng 15:2028–2037 Google Scholar

140.

Sato K, Uchikawa D, Shikida M (2001) Change in orientation-dependent etching properties of single-crystal silicon caused by a surfactant added to TMAH solution. Sens Mater 13:285–291 Google Scholar

141.

Sarro PM, Brida D, van der Vlist W, Brida S (2000) Effect of surfactant on surface quality of silicon microstructures etched in saturated TMAHW solutions. Sensors Actuators A 85:340–345 Google Scholar

142.

Sekimura M (1999) Anisotropic etching of surfactant-added TMAH solution. In: Proc. 12th IEEE International Conference on Micro Electro Mechanical Systems. (MEMS-99 Orlando, Florida, 17-21 Jan. 1999) pp 650–655. http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=746904&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D746904 Google Scholar

143.

Yang CR, Chen PY, Chiou YC, Lee RT (2005) Effects of mechanical agitation and surfactant additive on silicon anisotropic etching in alkaline KOH solution. Sens Actuators A 119:263–270 Google Scholar

144.

Resnik D, Vrtacnik D, Aljancic U, Mozek M, Amon S (2005) The role of Triton surfactant in anisotropic etching of {110} reflective planes on (100) silicon. J Micromech Microeng 15:1174–1183 Google Scholar

145.

Xu YW, Michael A, Kwok CY (2011) Formation of ultra-smooth 45° micromirror on (100) silicon with low concentration TMAH and surfactant: Techniques for enlarging the truly 45° portion. Sens Actuators A 166:164–71 Google Scholar

146.

Pal P, Sato K, Gosalvez MA, Shikida M (2007) Study of rounded concave and sharp edge convex corners undercutting in CMOS compatible anisotropic etchants. J Micromech Microeng 17:2299–2307 Google Scholar

147.

Zubel I, Kramkowska M, Rola K (2012) Silicon anisotropic etching in TMAH solutions containing alcohol and surfactant additives. Sens Actuators A 178:126–135 Google Scholar

148.

Rola KP, Zubel I (2013) Triton surfactant as an additive to KOH silicon etchant. J Microelectromech Syst 22:1373–1382 Google Scholar

149.

Tanaka H, Umeki N, Sato K (2013) Perfect adsorption of ppb-level surfactant in 5% KOH water solution on a silicon surface changing anisotropic etching properties. In: 17^{th} International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers & Eurosensors XXVII, Barcelona, Spain, 16-20 June 2013) pp 1978–1981. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6627183 Google Scholar

150.

Wind RA, Hines MA (2000) Macroscopic etch anisotropies and microscopic reaction mechanisms: a micromachined structure for the rapid assay of etchant anisotropy. Surface Science 460:21–38 Google Scholar

151.

Wind RA, Jones H, Little MJ, Hines MA (2002) Orientation-resolved chemical kinetics: using microfabrication to unravel the complicated chemistry of KOH/Si etching. J Phys Chem B 106:1557–1569 Google Scholar

152.

Gosalvez MA, Pal P, Ferrando N, Hida H, Sato K (2011) Experimental procurement of the complete 3D etch rate distribution of Si in anisotropic etchants based on vertically micromachined wagon wheel samples. J Micromech Microeng 21:125007 (14pp) Google Scholar

153.

Gosalvez MA, Pal P, Ferrando N, Sato K (2011) Reliability assessment of the complete 3D etch rate distribution of Si in anisotropic etchants based on vertically micromachined wagon wheel samples. J Micromech Microeng 21:125008 (12pp) Google Scholar

154.

Gosalvez MA, Pal P, Sato K (2011) Reconstructing the 3D etch rate distribution of silicon in anisotropic etchants using data from vicinal {100}, {110} and {111} surfaces. J Micromech Microeng 21:105018 (17pp) Google Scholar

155.

James TD, Parish G, Winchester KJ, Musca CA (2006) A crystallographic alignment method in silicon for deep, long microchannel fabrication. J Micromech Microeng 16:2177–2182 Google Scholar

156.

Chang WH, Huang YC (2005) A new pre-etching pattern to determine <110> crystallographic orientation on both (100) and (110) silicon wafers. Microsystem technologies 11:117–128 Google Scholar

157.

Ensell G (1996) Alignment of mask pattern to crystal orientations. Sens Actuators A 53:345–8 Google Scholar

158.

Vangbo M, Bäcklund Y (1996) Precise mask alignment to the crystallographic orientation of the silicon wafers using wet anisotropic etching. J Micromech Microeng 6:279–284 Google Scholar

159.

Lai JM, Chieng WH, Huang YC (1998) Precision alignment of mask etching with respect to crystal orientation. J Micromech Microeng 8:327–329 Google Scholar

160.

Tseng FG, Chang KC (2003) Precise [100] crystal orientations determinations on <110>−orientated silicon wafers. J Micromech Microeng 13:47–52 Google Scholar

161.

Pal P, Chandra S (2004) Bulk-micromachined structures inside anisotropically etched cavities. Smart Mater Struct 13:1424–1429 Google Scholar

162.

Chandra S, Singh J, Chand A (1997) Design and development of microstructures for MEMS applications. Proc SPIE 3226:22–30 Google Scholar

163.

Abedinov N, Grabiec P, Gotszalk T, Ivanov TZ, Voigt J, Rangelow IW (2001) Micromachined piezoresistive cantilever array with integrated resistive microheater for calorimetry and mass detection. J Vac Sci Technol A 19:2884–2888 Google Scholar

164.

Gosalvez MA (2003) Atomistic modeling of anisotropic etching of crystalline silicon. PhD Thesis, Dissertation 123, Dissertations of Laboratory of Physics, Helsinki University of Technology. Google Scholar

165.

Jaccodine RJ (1962) Use of modified free energy theorems to predict equilibrium growing and etching shapes. J Appl Phys 33:2643–2647 Google Scholar

166.

Pal P, Haldar S, Singh SS, Ashok A, Xing Y, Sato K (2014) A detailed investigation and explanation to the appearance of different undercut profiles in KOH and TMAH. J Micromech Microeng 24:095026 (9pp) Google Scholar

167.

Kutchoukow VG, Mollinger JR, Bossche A (1999) Novel method for spinning of photoresist on wafers with through-hole. In: Proc. 13th European Conf. on Solid-State Transducers (Eurosensors) pp 256–72 Google Scholar

168.

Craven D (1996) Photolithography challenges for micromachining industry, Proc. SPIE 2884, 16^{th} Annual BACUS Symposium on Photomask Technology and Management, 498 (Dec. 27, 1996) pp 1–10. http://spie.org/Publications/Proceedings/Paper/10.1117/12.262838 Google Scholar

169.

Venstra WJ, Spronck JW, Sarro PM, Eijk JV (2009) Photolithography on bulk micromachined substrates. J Micromech Microeng 19:055005 (6pp) Google Scholar

170.

Luxbacher T, Mirza A (1999) Spray coating for MEMS, interconnects, and advanced packaging applications. Sensors 16:61–64 Google Scholar

171.

Singh VK, Sasaki M, Hane K, Esashi M (2004) Flow condition in resist spray coating and patterning performance for three-dimensional photolithography over deep structures. Japan J Appl Phys 43:2387–2391 Google Scholar

172.

Linder S, Baltes H, Gnaedinger F, Doering E (1996) Photolithography in anisotropically etched grooves. In: Proc. 9^{th} Annual International Workshop on Micro Electro Mechanical Systems (MEMS-96, 11-15 Feb 1996) pp 38-43. http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=493826&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D493826 Google Scholar

173.

Kersten P, Bouwstra S, Petersen JW (1995) Photolithography on micromachined 3-D surfaces using electrodeposited photoresist. Sens Actuators A 51:51–54 Google Scholar

174.

Heschel M, Bouwstra S (1998) Conformal coating by photoresist of sharp corners of anisotropically etched through-holes in silicon. Sens Actuators A 70:75–80 Google Scholar

175.

Pal P, Sato K (2009) Complex three dimensional structures in Si{100} using wet bulk micromachining. J Micromech Microeng 19:105008 (9pp) Google Scholar

176.

Appels JA, Kooi E, Paffen MM, Schatorje JJH, Verkuylen WHCG (1970) Local oxidation of silicon and its application in semiconductor devices Technology. Philips Res Repts 25:118–132 Google Scholar

177.

Loewenstein LM, Tipton CM (1991) Chemical etching of thermally oxidized silicon nitride: comparison of wet and dry etching methods. J Electrochem Soc 138:1389–1394 Google Scholar