1.
Jo, Y.K., Kim, B.H., Jung, G.: Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Dis.
93(10), 1037–1043 (2009)
Google Scholar
2.
Knoll, B., Keilmann, F.: Near-field probing of vibrational absorption for chemical microscopy. Nature
399, 134–137 (1999)
Google Scholar
3.
Sengupta, S., Eavarone, D., Capila, I., Zhao, G., Watson, N., Kiziltepe, T., Sasisekharan, R.: Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system. Nature
436, 568–572 (2005)
Google Scholar
4.
Fauci, A.S.: Infectious diseases: considerations for the 21st century. Clin. Infect. Dis.
32(5), 675–685 (2001)
Google Scholar
5.
Brachman, P.S.: Infectious diseases—past, present, and future. Int. J. Epidemiol.
32(5), 684–686 (2003)
Google Scholar
6.
Syed, M.A., Bokhari, S.H.A.: Gold nanoparticle based microbial detection and identification. J. Biomed. Nanotechnol.
7(2), 229–237 (2011)
Google Scholar
7.
Syed, M.A.: Advances in nanodiagnostic techniques for microbial agents. Biosens. Bioelectron.
51, 391–400 (2014)
Google Scholar
8.
Muldrew, K.L.: Molecular diagnostics of infectious diseases. Curr. Opin. Pediatr.
21(1), 102–111 (2009)
Google Scholar
9.
Houpikian, P., Raoult, D.: Traditional and molecular techniques for the study of emerging bacterial diseases: one laboratory’s perspective. Emerg. Infect. Dis.
8(2), 122–131 (2002)
Google Scholar
10.
Chen, J.R., Miao, Y.Q., He, N.Y., Wu, X.H., Li, S.J.: Nanotechnology and biosensors. Biotechnol. Adv.
22(7), 505–518 (2004)
Google Scholar
11.
Kaittanis, C., Santra, S., Perez, J.M.: Emerging nanotechnology-based strategies for the identification of microbial pathogenesis. Adv. Drug Deliv. Rev.
62(4–5), 408–423 (2010)
Google Scholar
12.
Thompson, D.G., Enright, A., Faulds, K., Smith, W.E., Graham, D.: Ultrasensitive DNA detection using oligonucleotide-silver nanoparticle conjugates. Anal. Chem.
80(8), 2805–2810 (2008)
Google Scholar
13.
Storhoff, J.J., Elghanian, R., Mucic, R.C., Mirkin, C.A., Letsinger, R.L.: One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. J. Am. Chem. Soc.
120, 1959–1964 (1998)
Google Scholar
14.
Storhoff, J.J., Lucas, A.D., Garimella, V., Bao, Y.P., Müller, U.R.: Homogeneous detection of unamplified genomic DNA sequences based on colorimetric scatter of gold nanoparticle probes. Nat. Biotechnol.
22(7), 883–887 (2004)
Google Scholar
15.
Chen, Y., Aveyarda, J., Wilson, R.: Gold and silver nanoparticles functionalized with known numbers of oligonucleotides per particle for DNA detection. Chem. Commun.
24, 2804–2805 (2004). doi:
10.1039/B411181H
Google Scholar
16.
Cai, M., Li, F., Zhang, Y., Wang, Q.: One-pot polymerase chain reaction with gold nanoparticles for rapid and ultrasensitive DNA detection. Nano Res.
3, 557–563 (2010). doi:
10.1007/s12274-010-0016-6
Google Scholar
17.
Pradeep, T.: Nano: The Essentials. Understanding Nanoscience and Nanotechnology, pp. 128–155. Tata McGraw-Hill Publishing Company Ltd., New Delhi (2007)Google Scholar
18.
Sandström, P., Boncheva, M., Åkerman, B.: Nonspecific and thiol-specific binding of DNA to gold nanoparticles. Langmuir
19, 7537–7543 (2003)
Google Scholar
19.
Baptista, P., Doria, G., Henriques, D., Pereira, E., Franco, R.: Colorimetric detection of eukaryotic gene expression with DNA-derivatized goldnanoparticles. J. Biotechnol.
19, 111–117 (2005)
Google Scholar
20.
Zeng, S., Baillargeat, D., Hod, H.P., Yong, K.T.: Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications. Chem. Soc. Rev.
43, 3426–3452 (2014)
Google Scholar
21.
Mirkin, C.A., Letsinger, R.L., Mucic, R.C., Storhoff, J.J.: A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature
382, 607–609 (1996)
Google Scholar
22.
Reynolds, R.A., Mirkin, C.A., Letsinger, R.L.: Homogeneous, nanoparticle-based quantitative colorimetric detection of oligonucleotides. J. Am. Chem. Soc.
122, 3795–3796 (2000)
Google Scholar
23.
Demers, L.M., Mirkin, C.A., Mucic, R.C., Reynolds III, R.A., Letsinger, R.L., Elghanian, R., Viswanadham, G.: A fluorescence-based method for determining the surface coverage and hybridization efficiency of thiol-capped oligonucleotides bound to gold thin films and nanoparticles. Anal. Chem.
72, 5535–5541 (2000)
Google Scholar
24.
Storhoff, J.J., Elghanian, R., Mirkin, C.A., Letsinger, R.L.: Sequence-dependent stability of DNA-modified gold nanoparticles. Langmuir
18, 6666–6670 (2002)
Google Scholar
25.
Sato, K., Hosokawa, K., Maeda, M.: Rapid aggregation of gold nanoparticles induced by non-cross-linking DNA hybridization. J. Am. Chem. Soc.
125(27), 8102–8103 (2003)
Google Scholar
26.
Hill, D.H., Mirkin, C.A.: The bio-barcode assay for the detection of protein and nucleic acid targets using DTT-induced ligand exchange. Nat. Protoc.
1(1), 324–336 (2006)
Google Scholar
27.
Liu, C.H., Li, Z.P., Du, B.A., Duan, X.R., Wang, Y.C.: Silver nanoparticle-based ultrasensitive chemiluminescent detection of DNA hybridization and single-nucleotide polymorphisms. Anal. Chem.
78(11), 3738–3744 (2006)
Google Scholar
28.
Lee, J.S., Lytton-Jean, A.K., Hurst, S.J., Mirkin, C.A.: Silver nanoparticle–oligonucleotide conjugates based on DNA with triple cyclic disulfide moieties. Nano Lett.
7(7), 2112–2115 (2007)
Google Scholar
29.
Thompson, D.G., Faulds, K., Smith, W.E., Graham, D.: Precise control of the assembly of dye-coded oligonucleotide silver nanoparticle conjugates with single base mismatch discrimination using surface enhanced resonance raman scattering. J. Phys. Chem. C
114(16), 7384–7389 (2010)
Google Scholar
30.
Kim, Y.S., Kim, J.H., Kim, I.A., Lee, S.J., Gu, M.B.: The affinity ratio—its pivotal role in gold nanoparticle-based competitive colorimetric aptasensor. Biosens. Bioelectron.
26, 4058–4063 (2011)
Google Scholar
31.
Vidal Jr, B.C., Deivaraj, T.C., Yang, J., Too, H.P., Chow, G.M., Gane, L.M., Lee, J.Y.: Stability and hybridization-driven aggregation of silver nanoparticle–oligonucleotide conjugates. New J. Chem.
29, 812–816 (2005)
Google Scholar
32.
Cordray, M.S., Amdahl, M., Richards-Kortum, R.R.: Gold nanoparticle aggregation for quantification of oligonucleotides: optimization and increased dynamic range. Anal. Biochem.
431(2), 99–105 (2012)
Google Scholar
33.
Zhang, D., Carr, D.J., Alocilja, E.C.: Fluorescent bio-barcode DNA assay for the detection of
Salmonella enterica
Serovar enteritidis. Biosens. Bioelectron.
24, 1377–1381 (2009)
Google Scholar
34.
Dougan, J.A., Karlsson, C., Smith, W.E., Graham, D.: Enhanced oligonucleotide-nanoparticle conjugate stability using thioctic acid modified oligonucleotides. Nucleic Acids Res.
35(11), 3668–3675 (2007)
Google Scholar
35.
Li, Z., Jin, R., Mirkin, C.A., Letsinger, R.L.: Multiple thiol-anchor capped DNA-gold nanoparticle conjugates. Nucleic Acids Res.
30(7), 1558–1562 (2002)
Google Scholar
36.
Cotton, F.A., Wilkinson, G., Murillo, C.A., Bochmann, M.: Advanced Inorganic Chemistry, vol. 6, pp. 27–29. Wiley, New York (1999)Google Scholar
37.
Nicewarner-Pena, S.R., Raina, S., Goodrich, G.P., Fedoroff, N.V., Keating, C.D.: Hybridization and enzymatic extension of au nanoparticle-bound oligonucleotides. J. Am. Chem. Soc.
124(25), 7314–7323 (2002)
Google Scholar
38.
Baptista, P.V., Koziol-Montewka, M., Paluch-Oles, J., Doria, G., Franco, R.: Gold nanoparticle-probe-based assay for rapid and direct detection of
Mycobacterium tuberculosis DNA in clinical samples. Clin. Chem.
52(7), 1433–1434 (2006)
Google Scholar
39.
Liandris, E., Gazouli, M., Andreadou, M., Comor, M., Abazovic, N., Sechi, L.A., Ikonomopoulos, J.: Direct detection of unamplified DNA from pathogenic mycobacteria using DNA-derivatized gold nanoparticles. J. Microbiol. Methods
78(3), 260–264 (2009)
Google Scholar
40.
Vetrone, S.A., Huarng, M.C., Alocilja, E.C.: Detection of non-PCR amplified
S. enteritidis genomic DNA from food matrices using a gold-nanoparticle DNA biosensor: a proof-of-concept study. Sensors
12(8), 10487–10499 (2012)
Google Scholar
41.
Wu, W.H., Li, M., Wang, Y., Ouyang, H.X., Wang, L., Li, C.X., Cao, Y.C., Meng, Q.H., Lu, J.X.: Aptasensors for rapid detection of
Escherichia coli O157:H7 and
Salmonella typhimurium. Nanoscale Res. Lett.
7(1), 658–664 (2012)
Google Scholar
42.
Bakthavathsalam, P., Rajendran, V.K., Jaffar Ali, B.M.: A direct detection of
Escherichia coli genomic DNA using gold nanoprobes. J. Nanobiotechnol.
10, 8–17 (2012). doi:
10.1186/1477-3155-10-8
Google Scholar
43.
Andreadou, M., Liandris, E., Gazouli, M., Taka, S., Antoniou, M., Theodoropoulos, G., Tachtsidis, I., Goutas, N., Vlachodimitropoulos, D., Kasampalidis, I., Ikonomopoulos, J.: A novel non-amplification assay for the detection of
Leishmania spp. in clinical samples using gold nanoparticles. J. Microbiol. Methods
96, 56–61 (2014). doi:
10.1016/j.mimet.2013.10.011
Google Scholar
44.
Fujita, M., Katafuchi, Y., Ito, K., Kanayama, N., Takarada, T., Maeda, M.: Structural study on gold nanoparticle functionalized with DNA and its non-cross-linking aggregation. J. Colloid Interface Sci.
368(1), 629–635 (2012)
Google Scholar
45.
Chan, W.S., Tang, B.S., Boost, M.V., Chow, C., Leung, P.H.: Detection of methicillin-resistant
Staphylococcus aureus using a gold nanoparticle-based colourimetric polymerase chain reaction assay. Biosens. Bioelectron.
53, 105–111 (2014)
Google Scholar
46.
Cheung, Y.W., Kwok, J., Law, A.W., Watt, R.M., Kotaka, M., Tanner, J.A.: Structural basis for discriminatory recognition of
Plasmodium lactate dehydrogenase by a DNA aptamer. Proc. Natl. Acad. Sci. USA
110(40), 15967–15972 (2013)
Google Scholar
47.
Zagorovsky, K., Chan, W.C.W.: A plasmonic DNAzyme strategy for point-of-care genetic detection of infectious pathogens. Angew. Chem. Int. Ed.
52, 3168–3171 (2013)
Google Scholar
48.
Huang, S.H.: Gold nanoparticle-based immunochromatographic test for identification of Staphylococcus aureus from clinical specimens. Clin. Chim. Acta
373, 139–143 (2006)
Google Scholar
49.
Huang, P.J., Tay, L.L., Tanha, J., Ryan, S., Chau, L.K.: Single-domain antibody-conjugated nanoaggregate-embedded beads for targeted detection of pathogenic bacteria. Chem. Eur. J.
15, 9330–9334 (2009)
Google Scholar
50.
Varshney, M., Li, Y.: Interdigitated array microelectrode based impedance biosensor coupled with magnetic nanoparticle–antibody conjugates for detection of
Escherichia coli O157:H7 in food samples. Biosens. Bioelectron.
22, 2408–2414 (2007)
Google Scholar
51.
Wang, L., Zhao, W., O’Donoghue, M.B., Tan, W.: Fluorescent nanoparticles for multiplexed bacteria monitoring. Bioconjug. Chem.
18(2), 297–301 (2007)
Google Scholar
52.
Wang, S., Singh, A.K., Senapati, D., Neely, A., Yu, H., Ray, P.C.: Rapid colorimetric identification and targeted photothermal lysis of
Salmonella bacteria by using bioconjugated oval-shaped gold nanoparticles. Chem. Eur. J.
16, 5600–5606 (2010)
Google Scholar
53.
Phillips, R.L., Miranda, O.R., You, C.C., Rotello, V.M., Bunz, U.H.F.: Rapid and efficient identification of bacteria using gold-nanoparticle–poly(para-phenyleneethynylene) constructs. Angew. Chem. Int. Ed.
47, 2590–2594 (2008)
Google Scholar
54.
Bennett, A.R., MacPhee, S., Betts, R.P.: The isolation and detection of
Escherichia coli O157 by use of immunomagnetic separation and immunoassay procedures. Lett. Appl. Microbiol.
22(3), 237–243 (1996)
Google Scholar
55.
Chapman, P.A., Ellin, M., Ashton, R.: A comparison of immunomagnetic separation and culture, Reveal™ and VIP™ for detection of
E. coli O157 in enrichment cultures of naturally contaminated raw beef, lamb and mixed meat products. Lett. Appl. Microbiol.
32(3), 171–175 (2001)
Google Scholar