1.
Trampuz A, Piper KE, Jacobson MJ, Hanssen AD, Unni KK, Osmon DR,
Mandrekar JN, Cockerill FR, Steckelberg JM, Greenleaf JF, Patel R (2007) Sonication of
removed hip and knee prostheses for diagnosis of infection. N Engl J Med
357:654–663Google Scholar
2.
Jain AK, Sinha S (2005) Infected nonunion of the long bones. Clin Orthop
Relat Res:57–65Google Scholar
3.
Megas P (2005) Classification of non-union. Injury 36(Suppl
4):S30–S37Google Scholar
4.
Patzakis MJ, Zalavras CG (2005) Chronic posttraumatic osteomyelitis and
infected nonunion of the tibia: current management concepts. J Am Acad Orthop Surg
13:417–427Google Scholar
5.
Bi L, Hu Y, Fan H, Meng G, Liu J, Li D, Lv R (2007) Treatment of
contaminated bone defects with clindamycin-reconstituted bone xenograft-composites. J
Biomed Mater Res B Appl Biomater 82:418–427Google Scholar
6.
Gao C, Deng Y, Feng P, Mao Z, Li P, Yang B, Deng J, Cao Y, Shuai C, Peng
S (2014) Current progress in bioactive ceramic scaffolds for bone repair and
regeneration. Int J Mol Sci 15:4714–4732Google Scholar
7.
Zhou H, Lee J (2011) Nanoscale hydroxyapatite particles for bone tissue
engineering. Acta Biomater 7:2769–2781Google Scholar
8.
Tanaka T, Komaki H, Chazono M, Fujii K (2005) Use of a biphasic graft
constructed with chondrocytes overlying a beta-tricalcium phosphate block in the
treatment of rabbit osteochondral defects. Tissue Eng 11:331–339Google Scholar
9.
Schek RM, Taboas JM, Segvich SJ, Hollister SJ, Krebsbach PH (2004)
Engineered osteochondral grafts using biphasic composite solid free-form fabricated
scaffolds. Tissue Eng 10:1376–1385Google Scholar
10.
Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR (2006) Biodegradable and
bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering.
Biomaterials 27:3413–3431Google Scholar
11.
Lee SH, Shin H (2007) Matrices and scaffolds for delivery of bioactive
molecules in bone and cartilage tissue engineering. Adv Drug Deliv Rev
59:339–359Google Scholar
12.
Pelaz B, Alexiou C, Alvarez-Puebla RA, Alves F, Andrews AM, Ashraf S,
Balogh LP, Ballerini L, Bestetti A, Brendel C, Bosi S, Carril M, Chan WC, Chen C, Chen
X, Chen X, Cheng Z, Cui D, Du J, Dullin C, Escudero A, Feliu N, Gao M, George M,
Gogotsi Y, Grunweller A, Gu Z, Halas NJ, Hampp N, Hartmann RK, Hersam MC, Hunziker P,
Jian J, Jiang X, Jungebluth P, Kadhiresan P, Kataoka K, Khademhosseini A, Kopecek J,
Kotov NA, Krug HF, Lee DS, Lehr CM, Leong KW, Liang XJ, Ling Lim M, Liz-Marzan LM, Ma
X, Macchiarini P, Meng H, Mohwald H, Mulvaney P, Nel AE, Nie S, Nordlander P, Okano T,
Oliveira J, Park TH, Penner RM, Prato M, Puntes V, Rotello VM, Samarakoon A, Schaak
RE, Shen Y, Sjoqvist S, Skirtach AG, Soliman MG, Stevens MM, Sung HW, Tang BZ, Tietze
R, Udugama BN, VanEpps JS, Weil T, Weiss PS, Willner I, Wu Y, Yang L, Yue Z, Zhang Q,
Zhang Q, Zhang XE, Zhao Y, Zhou X, Parak WJ (2017) Diverse applications of
nanomedicine. ACS Nano 11:2313–2381Google Scholar
13.
Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV,
Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films.
Science 306:666–669Google Scholar
14.
Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater
6:183–191Google Scholar
15.
Geim AK (2009) Graphene: status and prospects. Science
324:1530–1534Google Scholar
16.
Luo WB, Chou SL, Wang JZ, Zhai YC, Liu HK (2015) A metal-free,
free-standing, macroporous graphene@g-C(3)N(4) composite air electrode for high-energy
lithium oxygen batteries. Small 11:2817–2824Google Scholar
17.
Yang X, Tu Y, Li L, Shang S, Tao XM (2010) Well-dispersed
chitosan/graphene oxide nanocomposites. ACS Appl Mater Interfaces
2:1707–1713Google Scholar
18.
Tang Z, Wu H, Cort JR, Buchko GW, Zhang Y, Shao Y, Aksay IA, Liu J, Lin
Y (2010) Constraint of DNA on functionalized graphene improves its biostability and
specificity. Small 6:1205–1209Google Scholar
19.
Akhavan O, Ghaderi E, Rahighi R (2012) Toward single-DNA electrochemical
biosensing by graphene nanowalls. ACS Nano 6:2904–2916Google Scholar
20.
Wu ZS, Ren W, Wen L, Gao L, Zhao J, Chen Z, Zhou G, Li F, Cheng HM
(2010) Graphene anchored with Co(3)O(4) nanoparticles as anode of lithium ion
batteries with enhanced reversible capacity and cyclic performance. ACS Nano
4:3187–3194Google Scholar
21.
Compton OC, Nguyen ST (2010) Graphene oxide, highly reduced graphene
oxide, and graphene: versatile building blocks for carbon-based materials. Small
6:711–723Google Scholar
22.
Shen H, Zhang L, Liu M, Zhang Z (2012) Biomedical applications of
graphene. Theranostics 2:283–294Google Scholar
23.
Liu Z, Robinson JT, Sun X, Dai H (2008) PEGylated nanographene oxide for
delivery of water-insoluble cancer drugs. J Am Chem Soc
130:10876–10877Google Scholar
24.
Liu S, Zeng TH, Hofmann M, Burcombe E, Wei J, Jiang R, Kong J, Chen Y
(2011) Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced
graphene oxide: membrane and oxidative stress. ACS Nano 5:6971–6980Google Scholar
25.
Peng C, Hu W, Zhou Y, Fan C, Huang Q (2010) Intracellular imaging with a
graphene-based fluorescent probe. Small 6:1686–1692Google Scholar
26.
Nurunnabi M, Khatun Z, Reeck GR, Lee DY, Lee YK (2013) Near infra-red
photoluminescent graphene nanoparticles greatly expand their use in noninvasive
biomedical imaging. Chem Commun (Camb) 49:5079–5081Google Scholar
27.
Yang K, Zhang S, Zhang G, Sun X, Lee ST, Liu Z (2010) Graphene in mice:
ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett
10:3318–3323Google Scholar
28.
Li J, Wang G, Zhu H, Zhang M, Zheng X, Di Z, Liu X, Wang X (2014)
Antibacterial activity of large-area monolayer graphene film manipulated by charge
transfer. Sci Rep 4:4359Google Scholar
29.
Qi X, Wang T, Long Y, Ni J (2015) Synergetic antibacterial activity of
reduced graphene oxide and boron doped diamond anode in three dimensional
electrochemical oxidation system. Sci Rep 5:10388Google Scholar
30.
Tu Y, Lv M, Xiu P, Huynh T, Zhang M, Castelli M, Liu Z, Huang Q, Fan C,
Fang H, Zhou R (2013) Destructive extraction of phospholipids from Escherichia coli
membranes by graphene nanosheets. Nat Nanotechnol 8:594–601Google Scholar
31.
Andrea P, Francesca LF (2016) Nano-scaled particles and fibres
occupational exposure assessment: an integrated approach from air sampling to skin and
surface contamination. Nano Biomed Eng 8:91–104Google Scholar
32.
Wang K, Ruan J, Song H, Zhang J, Wo Y, Guo S, Cui D (2011)
Biocompatibility of graphene oxide. Nanoscale Res Lett 6:8Google Scholar
33.
Zhou R, Gao H (2014) Cytotoxicity of graphene: recent advances and
future perspective. Wiley Interdiscip Rev Nanomed Nanobiotechnol
6:452–474Google Scholar
34.
Park EJ, Lee GH, Han BS, Lee BS, Lee S, Cho MH, Kim JH, Kim DW (2015)
Toxic response of graphene nanoplatelets in vivo and in vitro. Arch Toxicol
89:1557–1568Google Scholar
35.
Zhang H, Peng C, Yang J, Lv M, Liu R, He D, Fan C, Huang Q (2013)
Uniform ultrasmall graphene oxide nanosheets with low cytotoxicity and high cellular
uptake. ACS Appl Mater Interfaces 5:1761–1767Google Scholar
36.
Chong Y, Ma Y, Shen H, Tu X, Zhou X, Xu J, Dai J, Fan S, Zhang Z (2014)
The in vitro and in vivo toxicity of graphene quantum dots. Biomaterials
35:5041–5048Google Scholar
37.
Liu W, Cui L, Cao Y (2006) Bone reconstruction with bone marrow stromal
cells. Methods Enzymol 420:362–380Google Scholar
38.
Grayson WL, Bunnell BA, Martin E, Frazier T, Hung BP, Gimble JM (2015)
Stromal cells and stem cells in clinical bone regeneration. Nat Rev Endocrinol
11:140–150Google Scholar
39.
Talukdar Y, Rashkow JT, Lalwani G, Kanakia S, Sitharaman B (2014) The
effects of graphene nanostructures on mesenchymal stem cells. Biomaterials
35:4863–4877Google Scholar
40.
Akhavan O, Ghaderi E, Akhavan A (2012) Size-dependent genotoxicity of
graphene nanoplatelets in human stem cells. Biomaterials 33:8017–8025Google Scholar
41.
Shin SR, Li YC, Jang HL, Khoshakhlagh P, Akbari M, Nasajpour A, Zhang
YS, Tamayol A, Khademhosseini A (2016) Graphene-based materials for tissue
engineering. Adv Drug Deliv Rev 105:255–274Google Scholar
42.
Mu Q, Su G, Li L, Gilbertson BO, Yu LH, Zhang Q, Sun YP, Yan B (2012)
Size-dependent cell uptake of protein-coated graphene oxide nanosheets. ACS Appl Mater
Interfaces 4:2259–2266Google Scholar
43.
Chu Z, Zhang S, Zhang B, Zhang C, Fang CY, Rehor I, Cigler P, Chang HC,
Lin G, Liu R, Li Q (2014) Unambiguous observation of shape effects on cellular fate of
nanoparticles. Sci Rep 4:4495Google Scholar
44.
Li Y, Liu Y, Fu Y, Wei T, Le Guyader L, Gao G, Liu RS, Chang YZ, Chen C
(2012) The triggering of apoptosis in macrophages by pristine graphene through the
MAPK and TGF-beta signaling pathways. Biomaterials 33:402–411Google Scholar
45.
Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of
graphene oxide. Chem Soc Rev 39:228–240Google Scholar
46.
Hu W, Peng C, Lv M, Li X, Zhang Y, Chen N, Fan C, Huang Q (2011) Protein
corona-mediated mitigation of cytotoxicity of graphene oxide. ACS Nano
5:3693–3700Google Scholar
47.
Duch MC, Budinger GR, Liang YT, Soberanes S, Urich D, Chiarella SE,
Campochiaro LA, Gonzalez A, Chandel NS, Hersam MC, Mutlu GM (2011) Minimizing
oxidation and stable nanoscale dispersion improves the biocompatibility of graphene in
the lung. Nano Lett 11:5201–5207Google Scholar
48.
Sahu A, Choi WI, Tae G (2012) A stimuli-sensitive injectable graphene
oxide composite hydrogel. Chem Commun (Camb) 48:5820–5822Google Scholar
49.
Yang K, Wan J, Zhang S, Zhang Y, Lee ST, Liu Z (2011) In vivo
pharmacokinetics, long-term biodistribution, and toxicology of PEGylated graphene in
mice. ACS Nano 5:516–522Google Scholar
50.
Babaei P, Soltani Tehrani B, Alizadeh A (2012) Transplanted bone marrow
mesenchymal stem cells improve memory in rat models of Alzheimer's disease. Stem Cells
Int 2012:369417Google Scholar