1.
Feynman RP (1960) There’s plenty of room at the bottom. Eng Sci
23(5):22–36Google Scholar
2.
Taniguchi N (1974) On the basic concept of “nano-technology”. In: Proc
Intl Conf Prod Eng 26-29 August 1974, Tokyo, Part II. Japan Society of Precision
Engineering, Tokyo, pp 18–23Google Scholar
3.
Drexler KE (1992) Nanosystems: molecular machinery, manufacturing and
computation. John Wiley and Sons, Inc., New YorkGoogle Scholar
4.
International Organization for Standardization (2015)
Nanotechnologies—vocabulary—part 2. Nano-objects., ISO/TS 80004-2Google Scholar
5.
Whitesides GM (2003) The “right” size in nanobiotechnology. Nat
Biotechnol 21(10):1161–1165Google Scholar
6.
Dowling AP (2004) Development of nanotechnologies. Mater Today
7(12):30–35Google Scholar
7.
Sweeney AE (2015) Nanomedicine concepts in the general medical
curriculum: initiating a discussion. Int J Nanomedicine
10(1):7319–7331Google Scholar
8.
Fakruddin M, Hossain Z, Afroz H (2012) Prospects and applications of
nanobiotechnology: a medical perspective. J Nanobiotechnology 10:31Google Scholar
9.
Kamila S, McEwan C, Costley D, Atchison J, Sheng Y, Hamilton GR, Fowley
C, Callan JF (2016) Diagnostic and therapeutic applications of quantum dots in
nanomedicine. Top Curr Chem 370:203–224Google Scholar
10.
Orive G, Anitua E, Pedraz JL, Emerich DF (2009) Biomaterials for
promoting brain protection, repair and regeneration. Nat Rev Neurosci
10(9):682–692Google Scholar
11.
Iannazzo D, Piperno A, Pistone A, Grassi G, Galvagno S (2013) Recent
advances in carbon nanotubes as delivery systems for anticancer drugs. Curr Med Chem
20(11):1333–1354Google Scholar
12.
Ankri R, Peretz D, Motiei M, Sella-Tavor O, Popovtzer R (2013) New
optical method for enhanced detection of colon cancer by capsule endoscopy. Nanoscale
5(20):9806–9811Google Scholar
13.
Sanna V, Pala N, Sechi M (2014) Targeted therapy using nanotechnology:
focus on cancer. Int J Nanomedicine 9:467–483Google Scholar
14.
Mukherjee B (2013) Nanosize drug delivery system. Curr Pharm Biotechnol
14(15):1221Google Scholar
15.
Krishnamurthy S, Ke X, Yang YY (2015) Delivery of therapeutics using
nanocarriers for targeting cancer cells and cancer stem cells. Nanomedicine
10(1):143–160Google Scholar
16.
Ediriwickrema A, Saltzman WM (2015) Nanotherapy for cancer: targeting
and multifunctionality in the future of cancer therapies. ACS Biomater Sci Eng
1(2):64–78Google Scholar
17.
Lee BK, Yun YH, Park K (2015) Smart nanoparticles for drug delivery:
boundaries and opportunities. Chem Eng Sci 125:158–164Google Scholar
18.
Cui W, Li J, Decher G (2016) Self-assembled smart nanocarriers for
targeted drug delivery. Adv Mater 28(6):1302–1311Google Scholar
19.
Moyano DF, Liu Y, Peer D, Rotello VM (2016) Modulation of immune
response using engineered nanoparticle surfaces. Small 12(1):76–82Google Scholar
20.
Huang C, Ozdemir T, Xu LC, Butler PJ, Siedlecki CA, Brown JL, Zhang S
(2016) The role of substrate topography on the cellular uptake of nanoparticles. J
Biomed Mater Res B Appl Biomater 104(3):488–495Google Scholar
21.
Azzazy HM, Mansour MM, Kazmierczak SC (2007) From diagnostics to
therapy: prospects of quantum dots. Clin Biochem 40(13-14):917–927Google Scholar
22.
Mokhtarzadeh A, Alibakhshi A, Yaghoobi H, Hashemi M, Hejazi M, Ramezani
M (2016) Recent advances on biocompatible and biodegradable nanoparticles as gene
carriers. Expert Opin Biol Ther 16(6):771–784Google Scholar
23.
Ahmad M, Ahmed E, Hong ZL, Ahmed W, Elhissi A, Khalid NR (2014)
Photocatalytic, sonocatalytic and sonophotocatalytic degradation of Rhodamine B using
ZnO/CNTs composites photocatalysts. Ultrason Sonochem 21(2):761–773Google Scholar
24.
Jassby D, Farner Budarz J, Wiesner M (2012) Impact of aggregate size and
structure on the photocatalytic properties of TiO 2 and ZnO nanoparticles.
Environ Sci Technol 46(13):6934–6941 Google Scholar
25.
Soleimani F, Madaah Hosseini HR, Ordikhani F, Mokhtari-Dizaji M (2016)
Enhancing sonocatalytic properties of TiO 2 nanocatalysts by controlling
the surface conditions: effect of particle size and PVA modification. Desalin Water
Treat 57(58):28378–28385 Google Scholar
26.
Gupta SM, Tripathi M (2011) A review of TiO 2 nanoparticles.
Chin Sci Bull 56(16):1639–1657 Google Scholar
27.
Salata O (2004) Applications of nanoparticles in biology and medicine. J
Nanobiotechnology 2(1):3Google Scholar
28.
Zhang L, Gu FX, Chan JM, Wang AZ, Langer RS, Farokhzad OC (2008)
Nanoparticles in medicine: therapeutic applications and developments. Clin Pharmacol
Ther 83(5):761–769Google Scholar
29.
Bhattacharyya S, Kudgus RA, Bhattacharya R, Mukherjee P (2011) Inorganic
nanoparticles in cancer therapy. Pharm Res 28(2):237–259Google Scholar
30.
Rasmussen JW, Martinez E, Louka P, Wingett DG (2010) Zinc oxide
nanoparticles for selective destruction of tumor cells and potential for drug delivery
applications. Expert Opin Drug Deliv 7(9):1063–1077Google Scholar
31.
Khan MM, Adil SF, Al-Mayouf A (2015) Metal oxides as photocatalysts. J
Saudi Chem Soc 19(5):462–464Google Scholar
32.
Lee KM, Lai CW, Ngai KS, Juan JC (2016) Recent developments of zinc
oxide based photocatalyst in water treatment technology: a review. Water Res
88:428–448Google Scholar
33.
Haidaka H, Horikoshi S, Serpone N, Knowland J (1997) In vitro
photochemical damage to DNA, RNA and their bases by an inorganic sunscreen agent on
exposure to UVA and UVB radiation. J Photochem Photobiol A Chem
111(1-3):205–213Google Scholar
34.
Kim S, An YJ (2012) Effect of ZnO and TiO 2 nanoparticles
preilluminated with UVA and UVB light on Escherichia coli and
Bacillus subtilis. Appl Microbiol Biotechnol 95(1):243–253
Google Scholar
35.
Kühn KP, Chaberny IF, Massholder K, Stickler M, Benz VW, Sonntag HG,
Erdinger L (2003) Disinfection of surfaces by photocatalytic oxidation with titanium
dioxide and UVA light. Chemosphere 53(1):71–77Google Scholar
36.
Lee JE, Ko G (2013) Norovirus and MS2 inactivation kinetics of UV-A and
UV-B with and without TiO 2. Water Res 47(15):5607–5613 Google Scholar
37.
Pablos C, Marugán J, van Grieken R, Serrano E (2013) Emerging
micropollutant oxidation during disinfection processes using UV-C, UV-C/H
2O 2, UV-A/TiO 2 and UV-A/TiO 2/H
2O 2. Water Res 47(3):1237–1245 Google Scholar
38.
Robertson JMC, Robertson PKJ, Lawton LA (2005) A comparison of the
effectiveness of TiO 2 photocatalysis and UVA photolysis for the
destruction of three pathogenic microorganisms. J Photochem Photobiol A Chem
175(1):51–56 Google Scholar
39.
Anju SG, Jyothi KP, Joseph S, Suguna Y, Yesodharan EP (2012) Ultrasound
assisted semiconductor mediated catalytic degradation of organic pollutants in water:
comparative efficacy of ZnO, TiO 2 and ZnO-TiO 2. Res J Recent
Sci 1:191–201 Google Scholar
40.
Grčić I, Vujević D, Žižek K, Koprivanac N (2013) Treatment of organic
pollutants in water using TiO 2 powders: photocatalysis versus
sonocatalysis. React Kinet Mech Cat 109(2):335–354 Google Scholar
41.
Fujishima A, Rao TN, Tryk DA (2000) Titanium dioxide photocatalysis. J
Photochem Photobiol C Photchem Rev 1(1):1–21Google Scholar
42.
Mills A, le Hunte S (1997) An overview of semiconductor photocatalysis.
J Photochem Photobiol A Chem 108(1):1–35Google Scholar
43.
Linsebigler AL, Lu G, Yates JY (1995) Photocatalysis on TiO 2
surfaces: principles, mechanisms, and selected results. Chem Rev 95(3):735–758
Google Scholar
44.
Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at the
nanolevel. Science 311(5761):622–627Google Scholar
45.
Reczek CR, Chandel NS (2015) ROS-dependent signal transduction. Curr
Opin Cell Biol 33:8–13Google Scholar
46.
Quast SA, Berger A, Eberle J (2013) ROS-dependent phosphorylation of Bax
by wortmannin sensitizes melanoma cells for TRAIL-induced apoptosis. Cell Death Dis
4:e839Google Scholar
47.
Görlach A, Bertram K, Hudecova S, Krizanova O (2015) Calcium and ROS: a
mutual interplay. Redox Biol 6:260–271Google Scholar
48.
Sun Y (1990) Free radicals, antioxidant enzymes, and carcinogenesis.
Free Radic Biol Med 8(6):583–599Google Scholar
49.
Porter NA, Caldwell SE, Mills KA (1995) Mechanisms of free radical
oxidation of unsaturated lipids. Lipids 30(4):277–290Google Scholar
50.
Aust AE, Eveleigh JF (1999) Mechanisms of DNA oxidation. Proc Soc Exp
Biol Med 222(3):246–252Google Scholar
51.
Sohal RS (2002) Role of oxidative stress and protein oxidation in the
aging process. Free Radic Biol Med 33(1):37–44Google Scholar
52.
Martindale JL, Holbrook NJ (2002) Cellular response to oxidative stress:
signaling for suicide and survival. J Cell Physiol 192(1):1–15Google Scholar
53.
Antunes F, Cadenas E (2001) Cellular titration of apoptosis with steady
state concentrations of H 2O 2: submicromolar levels of H
2O 2 induce apoptosis through Fenton chemistry independent of
the cellular thiol state. Free Radic Biol Med 30(9):1008–1018 Google Scholar
54.
Liu J, Wang Z (2015) Increased oxidative stress as a selective
anticancer therapy. Oxid Med Cell Longev 2015:294303Google Scholar
55.
Mileo AM, Miccadei S (2016) Polyphenols as modulator of oxidative stress
in cancer disease: new therapeutic strategies. Oxid Med Cell Longev
2016:6475624Google Scholar
56.
Ahmad J, Akhter S, Rizwanullah M, Amin S, Rahman M, Ahmad MZ, Rizvi MA,
Kamal MA, Ahmad FJ (2015) Nanotechnology-based inhalation treatments for lung cancer:
state of the art. Nanotechnol Sci Appl 8:55–66Google Scholar
57.
Vinardell MP, Mitjans M (2015) Antitumor activities of metal oxide
nanoparticles. Nanomaterials 5:1004–1021Google Scholar
58.
Bystrzejewska B, Golimowski J, Urban PL (2009) Nanoparticles: their
potential toxicity, waste and environmental management. Waste Manage
29(9):2587–2595Google Scholar
59.
Menard A, Drobne D, Jemec A (2011) Ecotoxicity of nanosized TiO
2. Review of in vivo data. Environ Pollut 159(3):677–684
Google Scholar
60.
Chihara Y, Fujimoto K, Kondo H, Moriwaka Y, Sasahira T, Hirao Y,
Kuniyasu H (2007) Anti-tumor effects of liposome-encapsluated titanium dioxide in nude
mice. Pathobiology 74(6):353–358Google Scholar
61.
Landsiedel R, Kapp MD, Schulz M, Wiench K, Oesch F (2009) Genotoxicity
investigations on nanomaterials: methods, preparation and characterization of test
material, potential artifacts and limitations-many questions, some answers. Mutat Res
681(2-3):241–258Google Scholar
62.
Wang J, Fan Y (2014) Lung injury induced by TiO 2
nanoparticles depends on their structural features: size, shape, crystal phases, and
surface coating. Int J Mol Sci 15(12):22258–22278 Google Scholar
63.
Kobayashi N, Naya M, Endoh S, Maru J, Yamamoto K, Nakanishi J (2009)
Comparative pulmonary toxicity study of nano-TiO 2 particles of different
sizes and agglomerations in rats: different hort- and long-term post-instillation
results. Toxicology 264(1-2):110–118 Google Scholar
64.
Sycheva LP, Zhurkov VS, Iurchenko VV, Daugel-Dauge NO, Kovalenko MA,
Krivtsova EK, Durnev AD (2011) Investigation of genotoxic and cytotoxic effects of
micro- and nanosized titanium dioxide in six organs of mice in vivo. Mutat Res
726(1):8–14Google Scholar
65.
Xiong D, Fang T, Yu L, Sima X, Zhu W (2011) Effects of nano-scale TiO
2, ZnO and their bulk counterparts on zebrafish: acute toxicity,
oxidative stress and oxidative damage. Sci Total Environ 409(8):1444–1452
Google Scholar
66.
Ma-Hock L, Burkhardt S, Strauss V, Gamer AO, Wiench K, van Ravenzwaay B,
Landsiedel R (2009) Development of a short-term inhalation test in the rat using
nano-titanium dioxide as a model substance. Inhal Toxicol
21(2):102–118Google Scholar
67.
Bermudez E, Mangum JB, Wong BA, Asgharian B, Hext PM, Warheit DB,
Everitt JI (2004) Pulmonary responses of mice, rats, and hamsters to subchronic
inhalation of ultrafine titanium dioxide particles. Toxicol Sci
77(2):347–357Google Scholar
68.
Ze Y, Hu R, Wang X, Sang X, Ze X, Li B, Su J, Wang Y, Guan N, Zhao X,
Gui S, Zhu L, Cheng Z, Cheng J, Sheng L, Sun Q, Wang L, Hong F (2014) Neurotoxicity
and gene-expressed profile in brain-injured mice caused by exposure to titanium
dioxide nanoparticles. J Biomed Mater Res A 102(2):470–478Google Scholar
69.
Lindberg HK, Falck GC, Catalán J, Koivisto AJ, Suhonen S, Järventaus H,
Rossi EM, Nykäsenoja H, Peltonen Y, Moreno C, Alenius H, Tuomi T, Savolainen KM,
Norppa H (2012) Genotoxicity of inhaled nanosized TiO 2 in mice. Mutat Res
745(1-2):58–64 Google Scholar
70.
Rehn B, Seiler F, Rehn S, Bruch J, Maier M (2003) Investigations on the
inflammatory and genotoxic lung effects of two types of titanium dioxide: untreated
and surface treated. Toxicol Appl Pharmacol 189(2):84–95Google Scholar
71.
Trouiller B, Reliene R, Westbrook A, Solaimani P, Schiestl R (2009)
Titanium dioxide nanoparticles induce DNA damage and genetic instability in vivo in
mice. Cancer Res 69(22):784–8789Google Scholar
72.
Ze Y, Zheng L, Zhao X, Gui S, Sang X, Su J, Guan N, Zhu L, Sheng L, Hu
R, Cheng J, Cheng Z, Sun Q, Wang L, Hong F (2013) Molecular mechanism of titanium
dioxide nanoparticles-induced oxidative injury in the brain of mice. Chemosphere
92(9):1183–1189Google Scholar
73.
Reeves JF, Davies SJ, Dodd NJF, Jha AN (2008) Hydroxyl radicals (*OH)
are associated with titanium dioxide (TiO 2) nanoparticle-induced
cytotoxicity and oxidative DNA damage in fish cells. Mutat Res 640(1-2):113–122
Google Scholar
74.
Ferin J, Oberdörster G (1985) Biological effects and toxicity assessment
of titanium dioxides: anatase and rutile. Am Ind Hyg Assoc J
46(2):69–72Google Scholar
75.
IARC Working Group on the Evaluation of Carcinogenic Risks to Humans
(2010) Carbon black, titanium dioxide and talc. IARC Monogr Eval Carcinog Risks Hum
93:1–413Google Scholar
76.
Gurr JR, Wang AS, Chen CH, Jan KY (2005) Ultrafine titanium dioxide
particles in the absence of photoactivation can induce oxidative damage to human
bronchial epithelial cells. Toxicology 213(1-2):66–73Google Scholar
77.
Kongseng S, Yoovathaworn K, Wongprasert K, Chunhabundit R, Sukwong P,
Pissuwan D (2016) Cytotoxic and inflammatory responses of TiO 2
nanoparticles on human peripheral blood mononuclear cells. J Appl Toxicol
36(10):1364–1373 Google Scholar
78.
Long TC, Saleh N, Tilton RD, Lowry GV, Veronesi B (2006) Titanium
dioxide (P25) produces reactive oxygen species in immortalized brain microglia (BV2):
implications for nanoparticle neurotoxicity. Environ Sci Technol
40(14):4346–4352Google Scholar
79.
Long TC, Tajuba J, Sama P, Saleh N, Swartz C, Parker J, Hester S, Lowry
GV (2007) Nanosize titanium dioxide stimulates reactive oxygen species in brain
microglia and damages neurons in vitro. Environ Health Perspect
115(11):1631–1637Google Scholar
80.
Fujita K, Horie M, Kato H, Endoh S, Suzuki M, Nakamura A, Miyauchi A,
Yamamoto K, Kinugasa S, Nishio K, Yoshida Y, Iwahashi H, Nakanishi J (2009) Effects of
ultrafine TiO 2 particles on gene expression profile in human keratinocytes
without illumination: involvement of extracellular matrix and cell adhesion. Toxicol
Lett 191(2-3):109–117 Google Scholar
81.
Vevers WF, Jha AN (2008) Genotoxic and cytotoxic potential of titanium
dioxide (TiO 2) nanoparticles on fish cells in vitro. Ecotoxicology
7(5):410–420 Google Scholar
82.
Saquib Q, Al-Khedhairy AA, Siddiqui MA, Abou-Tarboush FM, Azam A,
Musarrat J (2012) Titanium dioxide nanoparticles induced cytotoxicity, oxidative
stress and DNA damage in human amnion epithelial (WISH) cells. Toxicol in Vitro
26(2):351–361Google Scholar
83.
Shukla RK, Sharma V, Pandey AK, Singh S, Sultana S, Dhawan A (2011)
ROS-mediated genotoxicity induced by titanium dioxide nanoparticles in human epidermal
cells. Toxicol in Vitro 25(1):231–241Google Scholar
84.
Vamanu CI, Cimpan MR, Høl PJ, Sørnes S, Lie SA, Gjerdet NR (2008)
Induction of cell death by TiO 2 nanoparticles: studies on a human
monoblastoid cell line. Toxicol in Vitro 22(7):1689–1696 Google Scholar
85.
Xue C, Wu J, Lan F, Liu W, Yang X, Zeng F, Xu H (2010) Nano titanium
dioxide induces the generation of ROS and potential damage in HaCaT cells under UVA
irradiation. J Nanosci Nanotechnol 10(12):8500–8507Google Scholar
86.
Gómez-Couso H, Fontán-Saínz M, Sichel C, Fernández-Ibáñez P, Ares-Mazás
E (2009) Efficacy of the solar water disinfection method in turbid waters
experimentally contaminated with Cryptosporidium parvum oocysts under
real field conditions. Trop Med Int Health 14(6):620–627 Google Scholar
87.
Lee JH, Kang M, Choung SJ, Ogino K, Miyata S, Kim MS, Park JY, Kim JB
(2004) The preparation of TiO 2 nanometer photocatalyst film by a
hydrothermal method and its sterilization performance for Giardia lamblia. Water Res
38(3):713–719 Google Scholar
88.
Sökmen M, Değerli S, Aslan A (2008) Photocatalytic disinfection of
Giardia intestinalis and Acanthamoeba castellani
cysts in water. Exp Parasitol 119(1):44–48 Google Scholar
89.
Wang CC, Wang S, Xia Q, He W, Yin JJ, Fu PP, Li JH (2013) Phototoxicity
of zinc oxide nanoparticles in HaCaT keratinocytes-generation of oxidative DNA damage
during UVA and visible light irradiation. J Nanosci Nanotechnol
13(6):3880–3888Google Scholar
90.
Sahu D, Kannan GM, Vijayaraghavan R (2014) Size-dependent effect of zinc
oxide on toxicity and inflammatory potential of human monocytes. J Toxicol Environ
Health A 77(4):177–191Google Scholar
91.
Senapati VA, Kumar A, Gupta GS, Pandey AK, Dhawan A (2015) ZnO
nanoparticles induced inflammatory response and genotoxicity in human blood cells: a
mechanistic approach. Food Chem Toxicol 85:61–70Google Scholar
92.
Hsiao IL, Huang YJ (2013) Effects of serum on cytotoxicity of nano- and
micro-sized ZnO particles. J Nanopart Res 15:1829Google Scholar
93.
Zhao X, Wang S, Wu Y, You H, Lv L (2013) Acute ZnO nanoparticles
exposure induces developmental toxicity, oxidative stress and DNA damage in
embryo-larval zebrafish. Aquat Toxicol 136–137:49–59Google Scholar
94.
Shen B, Scaiano JC, English AM (2006) Zeolite encapsulation decreases
TiO 2-photosensitized ROS generation in cultured human skin fibroblasts.
Photochem Photobiol 82(1):5–12 Google Scholar
95.
Wamer WG, Yin JJ (2011) Photocytotoxicity in human dermal fibroblasts
elicited by permanent makeup inks containing titanium dioxide. J Cosmet Sci
62(6):535–547Google Scholar
96.
Şeker SA, Elçin E, Yumak T, Sınağ A, Elçin MY (2014) In vitro
cytotoxicity of hydrothermally synthesized ZnO nanoparticles on human periodontal
ligament fibroblast and mouse dermal fibroblast cells. Toxicol in Vitro
28(8):1349–1358Google Scholar
97.
Kim JK, Lee WK, Lee EJ, Cho YJ, Lee KH, Kim HS, Chung Y, Kim KA, Lim Y
(1999) Mechanism of silica- and titanium dioxide-induced cytotoxicity in alveolar
macrophages. J Toxicol Environ Health A 58(7):437–450Google Scholar
98.
Botelho MC, Costa C, Silva S, Costa S, Dhawan A, Oliveira PA, Teixeira
JP (2014) Effects of titanium dioxide nanoparticles in human gastric epithelial cells
in vitro. Biomed Pharmacother 68(1):59–64Google Scholar
99.
Zhang AP, Sun YP (2004) Photocatalytic killing effect of TiO
2 nanoparticles on Ls-174-t human colon carcinoma cells. World J
Gastroenterol 10(21):3191–3193 Google Scholar
100.
Xu J, Sun Y, Huang J, Chen C, Liu G, Jiang Y, Zhao Y, Jiang Z (2007)
Photokilling cancer cells using highly cell-specific antibody-TiO 2
bioconjugates and electroporation. Bioelectrochemistry 71(2):217–222 Google Scholar
101.
Xu J, Sun Y, Zhao Y, Huang J, Chen C, Jiang Z (2007) Photocatalytic
inactivation effect of gold-doped TiO 2 (Au/TiO 2)
nanocomposites on human colon carcinoma LoVo cells. Int J Photoenergy 2007:97308
Google Scholar
102.
Abdulla-al-Mamun M, Kasumoto Y, Zannat T, Islam MS (2011) Synergistic
cell-killing by photocatalytic and plasmonic photothermal effects of Ag/TiO
2 core-shell composite nanoclusters against human epithelial carcinoma
(HeLa) cells. Appl Catal A Gen 398(1-2):134–142 Google Scholar
103.
Lai TY, Lee WC (2009) Killing of cancer cell line by photoexcitation of
folic acid-modified titanium dioxide nanoparticles. J Photochem Photobiol B
204(2-3):148–153Google Scholar
104.
Li Z, Pan X, Wang T, Wang PN, Chen JY, Mi L (2013) Comparison of the
killing effects between nitrogen-doped and pure TiO 2 on HeLa cells with
visible light irradiation. Nanoscale Res Lett 8(1):96 Google Scholar
105.
Ramkumar KM, Manjula C, Gnanakumar G, Kanjwal MA, Sekar TV, Paulmurugan
R, Rajaguru P (2012) Oxidative stress-mediated cytotoxicity and apoptosis induction by
TiO 2 nanofibers in HeLa cells. Eur J Pharm Biopharm 81(2):324–333
Google Scholar
106.
Lagopati N, Kitsiou PV, Kontos AI, Venieratos P, Kotsopoulou E, Kontos
AG, Dionysiou DD, Pispas S, Tsilibary EC, Falaras P (2010) Photo-induced treatment of
breast epithelial cancer cells using nanostructured titanium dioxide solution. J
Photochem Photobiol A Chem 214(2-3):215–223Google Scholar
107.
Wang L, Mao J, Zhang GH, Tu MJ (2007) Nano-cerium-element-doped titanium
dioxide induces apoptosis of Bel 7402 human hepatoma cells in the presence of visible
light. World J Gastroenterol 13(29):4011–4014Google Scholar
108.
Xu M, Huang N, Xiao Z, Lu Z (1998) Photoexcited TiO 2
nanoparticles through •OH-radicals induced malignant cells to necrosis.
Supramol Sci 5(5-6):449–451 Google Scholar
109.
Rozhkova EA, Ulasov I, Lai B, Dimitrijevic NM, Lesniak MS, Rajh T (2009)
A high-performance nanobiophotocatalyst for targeted brain cancer therapy. Nano Lett
9(9):3337–3342Google Scholar
110.
Kubota Y, Shuin T, Kawasaki C, Hosaka M, Kitamura H, Cai R, Sakai H,
Hashimoto K, Fujishima A (1994) Photokilling of T-24 human bladder cancer cells with
titanium dioxide. Br J Cancer 70(6):1107–1111Google Scholar
111.
Parveen S, Misra R, Sahoo SK (2012) Nanoparticles: a boon to drug
delivery, therapeutics, diagnostics and imaging. Nanomedicine
8(2):147–166Google Scholar
112.
Aw MS, Kurian M, Losic D (2013) Polymeric micelles for multidrug
delivery and combination therapy. Chem Eur J 19(38):12586–12601Google Scholar
113.
Yamaguchi S, Kobayashi H, Narita T, Kanehira K, Sonezaki S, Kubota Y,
Terasaka S, Iwasaki Y (2010) Novel photodynamic therapy using water-dispersed TiO
2-polyethylene glycol compound: evaluation of antitumor effect on glioma
cells and spheroids in vitro. Photochem Photobiol 86(4):964–971 Google Scholar
114.
Harada Y, Ogawa K, Irie Y, Endo H, Feril LB Jr, Uemura T, Tachibana K
(2011) Ultrasound activation of TiO 2 in melanoma tumors. J Control Release
149(2):190–195 Google Scholar
115.
Guo D, Wu C, Jiang H, Li Q, Wang X, Chen B (2008) Synergistic cytotoxic
effect of different sized ZnO nanoparticles and daunorubicin against leukemia cancer
cells under UV irradiation. J Photochem Photobiol B 93(3):119–126Google Scholar
116.
Li Q, Wang X, Lu X, Tian H, Jiang H, Lv G, Guo D, Wu C, Chen B (2009)
The incorporation of daunorubicin in cancer cells through the use of titanium dioxide
whiskers. Biomaterials 30(27):4708–4715Google Scholar
117.
Chen Y, Wan Y, Wang Y, Zhang H, Jiao Z (2011) Anticancer efficacy
enhancement and attenuation of side effects of doxorubicin with titanium dioxide
nanoparticles. Int J Nanomedicine 6:2321–2326Google Scholar
118.
Chouikrat R, Seve A, Vanderesse R, Benachour H, Barberi-Heyob M,
Richeter S, Raehm L, Durand JO, Verelst M, Frochot C (2012) Non polymeric
nanoparticles for photodynamic therapy applications: recent developments. Curr Med
Chem 19(6):781–792Google Scholar
119.
Yin ZF, Wu L, Yang HG, Su YH (2013) Recent progress in biomedical
applications of titanium dioxide. Phys Chem Chem Phys
15(14):4844–4858Google Scholar
120.
Chatterjee DK, Fong LS, Zhang Y (2008) Nanoparticles in photodynamic
therapy: an emerging paradigm. Adv Drug Deliv Rev 60(15):1627–1637Google Scholar
121.
Danhier F, Feron O, Préat V (2010) To exploit the tumor
microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer
drug delivery. J Control Release 148(2):135–146Google Scholar
122.
Sakurai Y, Kajimoto K, Hatakeyama H, Harashima H (2015) Advances in an
active and passive targeting to tumor and adipose tissues. Expert Opin Drug Deliv
12(1):41–52Google Scholar
123.
Hirsjärvi S, Passirani C, Benoit JP (2011) Passive and active tumour
targeting with nanocarriers. Curr Drug Discov Technol 8(3):188–196Google Scholar
124.
Xia T, Kovochich M, Brant J, Hotze M, Sempf J, Oberley T, Sioutas C, Yeh
JI, Wiesner MR, Nel AE (2006) Comparison of the abilities of ambient and manufactured
nanoparticles to induce cellular toxicity according to an oxidative stress paradigm.
Nano Lett 6(8):1794–1807Google Scholar
125.
Stearns RC, Paulauskis JD, Godleski JJ (2001) Endocytosis of ultrafine
particles by A549 cells. Am J Respir Cell Mol Biol 24(2):108–115Google Scholar
126.
Liu S, Xu L, Zhang T, Ren G, Yang Z (2010) Oxidative stress and
apoptosis induced by nanosized titanium dioxide in PC12 cells. Toxicology
267(1-3):172–177Google Scholar
127.
Yu KN, Sung JH, Lee S, Kim JE, Kim S, Cho WY, Lee AY, Park SJ, Lim J,
Park C, Chae C, Lee JK, Lee J, Kim JS, Cho MH (2015) Inhalation of titanium dioxide
induces endoplasmic reticulum stress-mediated autophagy and inflammation in mice. Food
Chem Toxicol 85:106–113Google Scholar
128.
Yu KN, Chang SH, Park SJ, Lim J, Lee J, Yoon TJ, Kim JS, Cho MH (2015)
Titanium dioxide nanoparticles induce endoplasmic reticulum stress-mediated autophagic
cell death via mitochondria-associated endoplasmic reticulum membrane disruption in
normal lung cells. PLoS One 10(6):e0131208Google Scholar
129.
Lai JC, Lai MB, Jandhyam S, Dukhande VV, Bhushan A, Daniels CK, Leung SW
(2008) Exposure to titanium dioxide and other metallic oxide nanoparticles induces
cytotoxicity on human neural cells and fibroblasts. Int J Nanomedicine
3(4):533–545Google Scholar
130.
Chaabane W, User SD, El-Gazzah M, Jaksik R, Sajjadi E, Rzeszowska-Wolny
J, Los MJ (2013) Autophagy, apoptosis, mitoptosis and necrosis: interdependence
between those pathways and effects on cancer. Arch Immunol Ther Exp (Warsz)
61(1):43–58Google Scholar
131.
Zhang H, Shan Y, Dong L (2014) A comparison of TiO 2 and ZnO
nanoparticles as photosensitizers in photodynamic therapy for cancer. J Biomed
Nanotechnol 10(8):1450–1457 Google Scholar
132.
Zhao J, Bowman L, Zhang X, Vallyathan V, Young SH, Castranova V, Ding M
(2009) Titanium dioxide (TiO 2) nanoparticles induce JB6 cell apoptosis
through activation of the caspase-8/Bid and mitochondrial pathways. J Toxicol Environ
Health A 72(19):1141–1149 Google Scholar
133.
Oltvai ZN, Milliman CL, Korsmeyer SJ (1993) Bcl-2 heterodimerizes in
vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell
74(4):609–619Google Scholar
134.
Korsmeyer SJ, Yin XM, Oltvai ZN, Veis-Novack DJ, Linette GP (1995)
Reactive oxygen species and the regulation of cell death by the Bcl-2 gene family.
Biochim Biophys Acta 1271(1):63–66Google Scholar
135.
Kessel D, Castelli M (2001) Evidence that Bcl-2 is the target of three
photosensitizers that induce a rapid apoptotic response. Photochem Photobiol
74(2):318–322Google Scholar
136.
Kim HR, Luo Y, Li G, Kessel D (1999) Enhanced apoptotic response to
photodynamic therapy after Bcl-2 transfection. Cancer Res
59(14):3429–3432Google Scholar
137.
Karmakar S, Banik NL, Patel SJ, Ray SK (2007) 5-Aminolevulinic
acid-based photodynamic therapy suppressed survival factors and activated proteases
for apoptosis in human glioblastoma U87MG cells. Neurosci Lett
415(3):242–247Google Scholar
138.
Zhang WG, Ma LP, Wang SW, Zhang ZY, Cao GD (1999) Antisense Bcl-2
retrovirus vector increases the sensitivity of a human gastric adenocarcinoma cell
line to photodynamic therapy. Photochem Photobiol 69(5):582–586Google Scholar
139.
Ahamed M, Akhtar MJ, Raja M, Ahmad I, Siddiqui J, AlSalhi MS, Alrokayan
SA (2011) ZnO nanorod-induced apoptosis in human alveolar adenocarcinoma cells via
p53, survivin and bax/bcl-2 pathways: role of oxidative stress. Nanomedicine
7(6):904–913Google Scholar
140.
Wahab R, Siddiqui MA, Saquib Q, Dwivedi S, Ahmad J, Musarrat J,
Al-Khedhairy AA, Shin HS (2014) ZnO nanoparticles induced oxidative stress and
apoptosis in HepG2 and MCF-7 cancer cells and their antibacterial activity. Colloids
Surf B Biointerfaces 117:267–276Google Scholar
141.
Cory S, Adams JM (2002) The Bcl-2 family: regulators of the cellular
life-or-death switch. Nat Rev Cancer 2(9):647–656Google Scholar
142.
Oleinick NL, Morris RL, Belichenko I (2002) The role of apoptosis in
response to photodynamic therapy: what, where, why, and how. Photochem Photobiol Sci
1(1):1–21Google Scholar
143.
Kang SJ, Kim BM, Lee YJ, Chung HW (2008) Titanium dioxide nanoparticles
trigger p53-mediated damage response in peripheral blood lymphocytes. Environ Mol
Mutagen 49(5):399–405Google Scholar
144.
Yoo KC, Yoon CH, Kwon D, Hyun KH, Woo SJ, Kim RK, Lim EJ, Suh Y, Kim MJ,
Yoon TH, Lee SJ (2012) Titanium dioxide induces apoptotic cell death through reactive
oxygen species-mediated Fas upregulation and Bax activation. Int J Nanomedicine
7:1203–1214Google Scholar
145.
Biola-Clier M, Beal D, Caillat S, Libert S, Armand L, Herlin-Boime N,
Sauvaigo S, Douki T, Carriere M (2017) Comparison of the DNA damage response in
BEAS-2B and A549 cells exposed to titanium dioxide nanoparticles. Mutagenesis
32(1):161–172Google Scholar
146.
Toyooka T, Amano T, Ibuki Y (2012) Titanium dioxide particles
phosphorylate histone H2AX independent of ROS production. Mutat Res
742(1-2):84–91Google Scholar
147.
Premanathan M, Karthikeyan K, Jeyasubramanian K, Manivannan G (2011)
Selective toxicity of ZnO nanoparticles toward Gram-positive bacteria and cancer cells
by apoptosis through lipid peroxidation. Nanomedicine 7(2):184–192Google Scholar
148.
Siddiqui MS, François M, Fenech MF, Leifert WR (2015) Persistent γH2AX:
a promising molecular marker of DNA damage and aging. Mutat Res Rev Mutat Res
766:1–19Google Scholar
149.
Son Y, Cheong YK, Kim NH, Chung HT, Kang DG, Pae HO (2011)
Mitogen-activated protein kinases and reactive oxygen species: how can ROS activate
MAPK pathways? J Signal Transduct 2011:792639Google Scholar
150.
Piette J (2015) Signalling pathway activation by photodynamic therapy:
NF-κB at the crossroad between oncology and immunology. Photochem Photobiol Sci
14(8):1510–1517Google Scholar
151.
Cheng X, Holenya P, Can S, Alborzinia H, Rubbiani R, Ott I, Wölfl S
(2014) A TrxR inhibiting gold(I) NHC complex induces apoptosis through ASK1-p38-MAPK
signaling in pancreatic cancer cells. Mol Cancer 13:221Google Scholar
152.
Tobiume K, Matsuzawa A, Takahashi T, Nishitoh H, Morita K, Takeda K,
Minowa O, Miyazono K, Noda T, Ichijo H (2001) ASK1 is required for sustained
activations of JNK/p38 MAP kinases and apoptosis. EMBO Rep
2(3):222–228Google Scholar
153.
Zheng GF, Cai Z, Meng XK, Zhang Y, Zhu W, Pang XY, Dou L (2015) Unfolded
protein response mediated JNK/AP-1 signal transduction, a target for ovarian cancer
treatment. Int J Clin Exp Pathol 8(6):6505–6511Google Scholar
154.
Liu J, Lin A (2005) Role of JNK activation in apoptosis: a double-edged
sword. Cell Res 15(1):36–42Google Scholar
155.
Kang SJ, Kim BM, Lee YJ, Hong SH, Chung HW (2009) Titanium dioxide
nanoparticles induce apoptosis through the JNK/p38-caspase-8-Bid pathway in
phytohemagglutinin-stimulated human lymphocytes. Biochem Biophys Res Commun
386(4):682–687Google Scholar
156.
Cagnol S, Chambard JC (2010) ERK and cell death: mechanisms of
ERK-induced cell death—apoptosis, autophagy and senescence. FEBS J
277(1):2–21Google Scholar
157.
Zhuang S, Schnellmann RG (2006) A death-promoting role for extracellular
signal-regulated kinase. J Pharmacol Exp Ther 319(3):991–997Google Scholar
158.
Yuan L, Wang Y, Wang J, Xiao H, Liu X (2014) Additive effect of zinc
oxide nanoparticles and isoorientin on apoptosis in human hepatoma cell line. Toxicol
Lett 225(2):294–304Google Scholar
159.
Hayashi H, Tsuchiya Y, Nakayama K, Satoh T, Nishida E (2008)
Down-regulation of the PI3-kinase/Akt pathway by ERK MAP kinase in growth factor
signaling. Genes Cells 13(9):941–947Google Scholar
160.
Ramachandiran S, Huang Q, Dong J, Lau SS, Monks TJ (2002)
Mitogen-activated protein kinases contribute to reactive oxygen species-induced cell
death in renal proximal tubule epithelial cells. Chem Res Toxicol
15(12):1635–1642Google Scholar
161.
Bai D, Ueno L, Vogt PK (2009) Akt-mediated regulation of NF-κB and the
essentialness of NF-κB for the oncogenicity of PI3K and Akt. Int J Cancer
125(12):2863–2870Google Scholar
162.
Coupienne I, Bontems S, Dewaele M, Rubio N, Habraken Y, Fulda S,
Agostinis P, Piette J (2011) NF-kappaB inhibition improves the sensitivity of human
glioblastoma cells to 5-aminolevulinic acid-based photodynamic therapy. Biochem
Pharmacol 81(5):606–616Google Scholar
163.
Granville DJ, Carthy CM, Jiang H, Levy JG, McManus BM, Matroule JY,
Piette J, Hunt DW (2000) Nuclear factor-kappaB activation by the photochemotherapeutic
agent verteporfin. Blood 95(1):256–262Google Scholar
164.
Kessel D, Reiners JJ Jr (2007) Apoptosis and autophagy after
mitochondrial or endoplasmic reticulum photodamage. Photochem Photobiol
83(5):1024–1028Google Scholar
165.
Kessel D, Arroyo AS (2007) Apoptotic and autophagic responses to Bcl-2
inhibition and photodamage. Photochem Photobiol Sci 6(12):1290–1295Google Scholar
166.
Kang R, Zeh HJ, Lotze MT, Tang D (2011) The Beclin 1 network regulates
autophagy and apoptosis. Cell Death Differ 18(4):571–580Google Scholar
167.
Decuypere JP, Parys JB, Bultynck G (2012) Regulation of the autophagic
Bcl-2/Beclin 1 interaction. Cells 1(3):284–312Google Scholar
168.
Ouyang DY, Xu LH, He XH, Zhang YT, Zeng LH, Cai JY, Ren S (2013)
Autophagy is differentially induced in prostate cancer LNCaP, DU145 and PC-3 cells via
distinct splicing profiles of ATG5. Autophagy 9(1):20–32Google Scholar
169.
Reiners JJ Jr, Caruso JA, Mathieu P, Chelladurai B, Yin XM, Kessel D
(2002) Release of cytochrome c and activation of pro-caspase-9 following lysosomal
photodamage involves Bid cleavage. Cell Death Differ 9(9):934–944Google Scholar
170.
Buytaert E, Callewaert G, Vandenheede JR, Agostinis P (2006) Deficiency
in apoptotic effectors Bax and Bak reveals an autophagic cell death pathway initiated
by photodamage to the endoplasmic reticulum. Autophagy 2(3):238–240Google Scholar
171.
Maiuri MC, Criollo A, Kroemer G (2010) Crosstalk between apoptosis and
autophagy within the Beclin 1 interactome. EMBO J 29(3):515–516Google Scholar
172.
Kim I, He YY (2013) Targeting the AMP-activated protein kinase for
cancer prevention and therapy. Front Oncol 3:175Google Scholar
173.
Kaminskyy VO, Zhivotovsky B (2014) Free radicals in cross talk between
autophagy and apoptosis. Antioxid Redox Signal 21(1):86–102Google Scholar
174.
Bjornsti MA, Houghton PJ (2004) The TOR pathway: a target for cancer
therapy. Nat Rev Cancer 4(5):335–348Google Scholar
175.
Weyergang A, Berg K, Kaalhus O, Peng Q, Selbo PK (2009) Photodynamic
therapy targets the mTOR signaling network in vitro and in vivo. Mol Pharm
6(1):255–264Google Scholar
176.
Wang X, Qi W, Li Y, Zhang N, Dong L, Sun M, Cun J, Zhang Y, Lv S, Yang Q
(2015) Huaier extract induces autophagic cell death by inhibiting the mTOR/S6K pathway
in breast cancer cells. PLoS One 10(7):e0131771Google Scholar
177.
Karch J, Molkentin JD (2015) Regulated necrotic cell death: the passive
aggressive side of Bax and Bak. Circ Res 116(11):1800–1809Google Scholar
178.
Zong WX, Thompson CB (2006) Necrotic death as a cell fate. Genes Dev
20(1):1–15Google Scholar
179.
Guo D, Bi H, Liu B, Wu Q, Wang D, Cui Y (2013) Reactive oxygen
species-induced cytotoxic effects of zinc oxide nanoparticles in rat retinal ganglion
cells. Toxicol in Vitro 27(2):731–738Google Scholar
180.
Guo D, Bi H, Wang D, Wu Q (2013) Zinc oxide nanoparticles decrease the
expression and activity of plasma membrane calcium ATPase, disrupt the intracellular
calcium homeostasis in rat retinal ganglion cells. Int J Biochem Cell Biol
45(8):1849–1859Google Scholar
181.
Wang D, Guo D, Bi H, Wu Q, Tian Q, Du Y (2013) Zinc oxide nanoparticles
inhibit Ca 2+-ATPase expression in human lens epithelial cells under UVB
irradiation. Toxicol in Vitro 27(8):2117–2126 Google Scholar
182.
Proskuryakov SY, Gabai VL (2010) Mechanisms of tumor cell necrosis. Curr
Pharm Des 16(1):56–68Google Scholar
183.
Yamaguchi S, Kobayashi H, Narita T, Kanehira K, Sonezaki S, Kudo N,
Kubota Y, Terasaka S, Houkin K (2011) Sonodynamic therapy using water-dispersed TiO
2-polyethyleneglycol compound on glioma cells: comparison of cytotoxic
mechanism with photodynamic therapy. Ultrason Sonochem 18(5):1197–1204
Google Scholar
184.
Fujishima A, Cai RX, Otsuki J, Hashimoto K, Iloth K, Yamashita T, Kubota
Y (1993) Biochemical application of photoelectrochemistry: photokilling of malignant
cells with TiO 2 powder. Electrochim Acta 38(1):153–157 Google Scholar
185.
Gogniat G, Dukan S (2007) TiO 2 photocatalysis causes DNA
damage via fenton reaction-generated hydroxyl radicals during the recovery period.
Appl Environ Microbiol 73(23):7740–7743 Google Scholar
186.
Jin C, Tang Y, Fan XY, Ye XT, Li XL, Tang K, Zhang YF, Li AG, Yang YJ
(2013) In vivo evaluation of the interaction between titanium dioxide nanoparticle and
rat liver DNA. Toxicol Ind Health 29(3):235–244Google Scholar
187.
Ozben T (2007) Oxidative stress and apoptosis: impact on cancer therapy.
J Pharm Sci 96(9):2181–2196Google Scholar
188.
Liu L, Miao P, Xu Y, Tian Z, Zou Z, Li G (2010) Study of Pt/TiO
2 nanocomposite for cancer-cell treatment. J Photochem Photobiol B
98(3):207–210 Google Scholar
189.
Arooj S, Nazir S, Nadhman A, Ahmad N, Muhammad B, Ahmad I, Mazhar K,
Abbasi R (2015) Novel ZnO:Ag nanocomposites induce significant oxidative stress in
human fibroblast malignant melanoma (Ht144) cells. Beilstein J Nanotechnol
6:570–582Google Scholar
190.
Venkatasubbu GD, Ramasamy S, Ramakrishnan V, Kumar J (2013) Folate
targeted PEGylated titanium dioxide nanoparticles as a nanocarrier for targeted
paclitaxel drug delivery. Adv Powder Technol 24(6):947–954Google Scholar
191.
Feng X, Zhang S, Wu H, Lou X (2015) A novel folic acid-conjugated
TiO2-SiO2 photosensitizer for cancer targeting in photodynamic therapy. Colloids Surf
B Biointerfaces 125:197–205Google Scholar
192.
Allison RR, Downie GH, Cuenca R, Hu XH, Childs CJ, Sibata CH (2004)
Photosensitizers in clinical PDT. Photodiagnosis Photodyn Ther
1(1):27–42Google Scholar
193.
Chatterjee DK, Yong Z (2008) Upconverting nanoparticles as
nanotransducers for photodynamic therapy in cancer cells. Nanomedicine (Lond)
3(1):73–82Google Scholar
194.
Ungun B, Prud'homme RK, Budijon SJ, Shan J, Lim SF, Ju Y, Austin R
(2009) Nanofabricated upconversion nanoparticles for photodynamic therapy. Opt Express
17(1):80–86Google Scholar
195.
Lucky SS, Muhammad Idris N, Li Z, Huang K, Soo KC, Zhang Y (2015)
Titania coated upconversion nanoparticles for near-infrared light triggered
photodynamic therapy. ACS Nano 9(1):191–205Google Scholar
196.
Hou Z, Zhang Y, Deng K, Chen Y, Li X, Deng X, Cheng Z, Lian H, Li C, Lin
J (2015) UV-emitting upconversion-based TiO 2 photosensitizing
nanoplatform: near-infrared light mediated in vivo photodynamic therapy via
mitochondria-involved apoptosis pathway. ACS Nano 9(3):2584–2599 Google Scholar
197.
Yu Z, Sun Q, Pan W, Li N, Tang B (2015) A near-infrared triggered
nanophotosensitizer inducing domino effect on mitochondrial reactive oxygen species
burst for cancer therapy. ACS Nano 9(11):11064–11074Google Scholar
198.
Thevenot P, Cho J, Wavhal D, Timmons RB, Tang L (2008) Surface chemistry
influences cancer killing effect of TiO 2 nanoparticles. Nanomedicine
4(3):226–236 Google Scholar
199.
McHale AP, Callan JF, Nomikou N, Fowley C, Callan B (2016) Sonodynamic
therapy: concept, mechanism and application to cancer treatment. Adv Exp Med Biol
880:429–450Google Scholar
200.
Moosavi Nejad S, Takahashi H, Hosseini H, Watanabe A, Endo H, Narihira
K, Kikuta T, Tachibana K (2016) Acute effects of sono-activated photocatalytic
titanium dioxide nanoparticles on oral squamous cell carcinoma. Ultrason Sonochem
32:95–101Google Scholar
201.
Saito K, Miyake K, McNeil PL, Kato K, Yago K, Sugai N (1999) Plasma
membrane disruption underlies injury of the corneal endothelium by ultrasound. Exp Eye
Res 68(4):431–437Google Scholar
202.
Ogino C, Shibata N, Sasai R, Takaki K, Miyachi Y, Kuroda S, Ninomiya K,
Shimizu N (2010) Construction of protein-modified TiO 2 nanoparticles for
use with ultrasound irradiation in a novel cell injuring method. Bioorg Med Chem Lett
20(17):5320–5325 Google Scholar
203.
Ninomiya K, Ogino C, Oshima S, Sonoke S, Kuroda S, Shimizu N (2012)
Targeted sonodynamic therapy using protein-modified TiO 2 nanoparticles.
Ultrason Sonochem 19(3):607–614 Google Scholar
204.
Ninomiya K, Noda K, Ogino C, Kuroda S, Shimizu N (2014) Enhanced OH
radical generation by dual-frequency ultrasound with TiO 2 nanoparticles:
its application to targeted sonodynamic therapy. Ultrason Sonochem 21(1):289–294
Google Scholar
205.
Ninomiya K, Fukuda A, Ogino C, Shimizu N (2014) Targeted sonocatalytic
cancer cell injury using avidin-conjugated titanium dioxide nanoparticles. Ultrason
Sonochem 21(5):1624–1628Google Scholar
206.
Corbo C, Molinaro R, Parodi A, Toledano Furman NE, Salvatore F,
Tasciotti E (2016) The impact of nanoparticle protein corona on cytotoxicity,
immunotoxicity and target drug delivery. Nanomedicine (Lond)
11(1):81–100Google Scholar
207.
Lee YK, Choi EJ, Webster TJ, Kim SH, Khang D (2014) Effect of the
protein corona on nanoparticles for modulating cytotoxicity and immunotoxicity. Int J
Nanomedicine 10(1):97–113Google Scholar
208.
Garvas M, Testen A, Umek P, Gloter A, Koklic T, Strancar J (2015)
Protein corona prevents TiO 2 phototoxicity. PLoS One 10(6):e0129577
Google Scholar
209.
Rehman FU, Zhao C, Jiang H, Wang X (2016) Biomedical applications of
nano-titania in theranostics and photodynamic therapy. Biomater Sci
4(1):40–54Google Scholar
210.
Zhang Y, Nayak TR, Hong H, Cai W (2013) Biomedical applications of zinc
oxide nanomaterials. Curr Mol Med 13(10):1633–1645Google Scholar