1.

Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830Google Scholar

2.

Ozbay E (2006) Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311:57–58Google Scholar

3.

Zia R, Schuller JA, Chandran A (2006) Plasmonics: the next chip-scale technology. Mater Today 9:20–27Google Scholar

4.

Bozhevolnyi SI, Volkov VS, Devaux E, Laluet JY, Ebbesen TW (2006) Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 440:508–511Google Scholar

5.

Zhang AJ, Guo ZY, Tao YF, Wang W, Mao XQ, Fan GH, Zhou KY, Qu SL (2015) Advanced light-trapping effect of thin-film solar cell with dual photonic crystals. Nanoscale Res Lett 10:1–10Google Scholar

6.

Muhlschlegel P, Eisler HJ, Martin OJF, Hecht B, Pohl DW (2006) Resonant optical antennas. Science 308:1607–1609Google Scholar

7.

Wang J, Wang Y, Zhang X, Yang K, Song Y, Liu S (2010) Splitting and unidirectional excitation of surface plasmon polaritons by two uniform metallic nanoslits with a nanocavity antenna. J Mod Opt 57:1630–1634Google Scholar

8.

Oulton RF, Sorger VJ, Zentgraf T, Ma RM, Gladden C, Dai L, Bartal G, Zhang X (2009) Plasmon lasers at deep subwavelength scale. Nature 461:629–632Google Scholar

9.

Zijlstra P, Chon JW, Gu M (2009) Five-dimensional optical recording mediated by surface plasmons in gold nanorods. Nature 459:410–413Google Scholar

10.

Tang B, Wang J, Xia X, Liang X, Song C, Qu S (2015) Plasmonic induced transparency and unidirectional control based on the waveguide structure with quadrant ring resonators. Appl Phys Express 8:032202Google Scholar

11.

Luo LB, Ge CW, Tao YF, Zhu L, Zheng K, Wang W, Sun YX, Shen F, Guo ZY (2016). High-efficiency refractive index sensor based on the metallic nanoslit arrays with gain-assisted materials. Nanophotonics 5:139-146Google Scholar

12.

Skorobogatiy M, Kabashin AV (2006) Photon crystal waveguide-based surface plasmon resonance biosensor. Appl Phys Lett 89:143518Google Scholar

13.

Wang W, Guo ZY, Zhou KY, Sun YX, Shen F, Li Y, Qu SL, Liu ST (2015) Polarization-independent longitudinal multi-focusing metalens. Opt Express 23:29855–29866Google Scholar

14.

Chen SW, Huang YH, Chao BK, Hsueh CH, Li JH (2014) Electric field enhancement and far-field radiation pattern of the nanoantenna with concentric rings. Nanoscale Res Lett 9:681Google Scholar

15.

Qu S, Song C, Xia X, Liang X, Tang B, Hu ZD, Wang J (2016) Detuned plasmonic Bragg grating sensor based on defect metal-insulator-metal waveguide. Sensors 16:784Google Scholar

16.

Liu JQ, Wang LL, He MD, Huang WQ, Wang D, Zou BS, Wen S (2008) A wide bandgap plasmonic Bragg reflector. Opt Express 16:4888–4894Google Scholar

17.

Tian M, Lu P, Chen L, Liu DM, Peyghambarian N (2012) Plasmonic Bragg reflectors based on metal-embedded MIM structure. Opt Commun 285:5122–5127Google Scholar

18.

Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669Google Scholar

19.

Geim AK, Novoselov KS (2007) The rise of graphene. Nature Mater 6:183–191Google Scholar

20.

Wang F, Zhang Y, Tian C, Girit C, Zettl A, Crommie M, Shen YR (2008) Gate-variable optical transitions in graphene. Science 320:206–209Google Scholar

21.

Fei Z, Rodin AS, Andreev GO, Bao W, Mcleod AS, Wagner M, Zhang LM, Zhao Z, Thiemens M, Dominguez G, Fogler MM, Castro Neto AH, Lau CN, Keilmann F, Basov DN (2012) Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 487:82–85Google Scholar

22.

Brar VW, Jang MS, Sherrott M, Lopez JJ, Atwater HA (2013) Highly confined tunable mid-infrared plasmonics in graphene nanoresonators. Nano Lett 13:2541–2547Google Scholar

23.

Zheng J, Yu L, He S, Dai D (2015) Tunable pattern-free graphene nanoplasmonic waveguides on trenched silicon substrate. Science 5:7987–7987Google Scholar

24.

Kong XT, Bai B, Dai Q (2015) Graphene plasmon propagation on corrugated silicon substrates. Opt Lett 40:1–4Google Scholar

25.

Zhu X, Yan W, Mortensen NA, Xiao S (2013) Bends and splitters in graphene nanoribbon waveguides. Opt Express 21:3486–3491Google Scholar

26.

Yuan H, Yang H, Liu P, Jiang X, Sun X (2014) Mode manipulation and near-THz absorptions in binary grating-graphene layer structures. Nanoscale Res Lett 9:90Google Scholar

27.

Wang X, Xia X, Wang J, Zhang F, Hu ZD, Liu C (2015) Tunable plasmonically-induced transparency with unsymmetrical graphene-rings resonators. J Appl Phys 118:013101Google Scholar

28.

Christensen J, Manjavacas A, Thongrattanasiri S, Koppens FHL, Abajo FJGD (2012) Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons. ACS Nano 6:431–440Google Scholar

29.

Lao J, Tao J, Wang Q, Huang X (2014) Tunable graphene-based plasmonic waveguides: nano modulators and nano attenuators. Laser Photon Rev 8:569–574Google Scholar

30.

Lu H, Zeng C, Zhang Q, Liu X, Hossain MM, Reineck P, Gu M (2015) Graphene-based active slow surface plasmon polaritons. Sci Rep 5:8443Google Scholar

31.

Tao J, Yu X, Hu B, Dubrovkin A, Wang Q (2014) Graphene-based tunable plasmonic Bragg reflector with a broad bandwidth. Opt Lett 39:271–274Google Scholar

32.

Jin J (2002) The finite element method in electromagnetics. New York: Wiley-IEEE PressGoogle Scholar

33.

Jablan M, Buljan H, Soljacic M (2009) Plasmonics in graphene at infra-red frequencies. Phys Rev B 80:308–310Google Scholar

34.

Fal'kovskii LA (2008) Optical properties of graphene. J Exp Theor Phys 115:496–508Google Scholar

35.

Hanson GW (2008) Quasi-transverse electromagnetic modes supported by a graphene parallel-plate waveguide. J Appl Phys 104:084314Google Scholar

36.

Gao W, Shu J, Qiu C, Xu Q (2012) Excitation of plasmonic waves in graphene by guided-mode resonances. ACS Nano 6:7806–7813Google Scholar

37.

Thongrattanasiri S, Koppens FHL, Abajo FJGD (2012) Complete optical absorption in periodically patterned graphene. Phys Rev Lett 108:799–802Google Scholar

38.

Liu Y, Liu Y, Kim J (2010) Characteristics of plasmonic Bragg reflectors with insulator width modulated in sawtooth profiles. Opt Express 18:11589–11598Google Scholar

39.

Hossieni A, Massoud Y (2006) A low-loss metal-insulator-metal plasmonic Bragg reflector. Opt Express 14:11318–11323Google Scholar

40.

Chang YJ, Chen CY (2013) Ultracompact, narrowband three-dimensional plasmonic waveguide Bragg grating in metal/multi-insulator/metal configuration. Appl Opt 52:889–896Google Scholar