Firstly, planar (control) and nanostructured (using NIL) Au electrodes (Au and NIL/Au electrodes, respectively) were fabricated. As control studies, electrochemically cleaned Au electrodes were imaged using AFM and SEM (). According to AFM, the Au electrodes had a granular surface, in good agreement with previous reports [20, 23]. Specifically, the grains exhibited lateral dimensions in the range of 20–80 nm, and vertical dimensions in the 1–8 nm range, resulting in a roughness factor (f) of the Au surface equal to 1.06 ± 0.02 (, left). Indeed, for Au electrodes Areal was only 1.12-fold higher compared to Ageom. It is clearly seen that the NIL modification resulted in the formation of a regular, well-ordered, 2D hexagonal lattice of nanocavities, increasing the f value to 1.65 ± 0.03 (, right). The centres of the nanocavities were separated by an average distance of approximately 300 nm, whereas their depth was 208 ± 13 nm or 106 ± 9 nm, depending on the directions defined by the two different primitive translation vectors of the lattice, as was revealed by AFM (, Figure S2 in Supporting Information File 1). On the one hand, the SEM studies and electrochemical investigations of Au and NIL/Au electrodes resulted in similar data (i.e., NIL modification significantly increased the roughness of the Au surface). On the other hand, contrary to AFM, much higher f values were obtained, viz. 1.7 ± 0.1 and 5.5 ± 0.5, for Au and NIL/Au electrodes, respectively, as calculated from electrochemical data. The underestimated f values revealed in the AFM studies might be attributed to different factors. For instance, AFM is not sensitive to roughness smaller than that of the tip. Moreover, due to its finite size, it may be that the tip does not reach the bottom of the nanocavities. In this case the corresponding area will not be included in the estimation of the f value. Therefore, in our calculations, f values from the electrochemical studies were used.
Figure 1 AFM (a, b) and SEM (c, d) images of a Au electrode (a, c) and a NIL/Au electrode (b, d).
Secondly, electrochemical investigations of Au and NIL/Au electrodes were also performed in the O2-containing buffer, PBS, over the potential range of 0.0–0.6 V vs SCE (0.24–0.84 V vs NHE). Electrocatalytic reduction of O2 was not observed, neither on the Au nor the NIL/Au electrodes (, curves 1’ and 2’).
Figure 2 CVs of an NIL/Au electrode (1, 1’) and a Au electrode (2, 2’) modified with MvBOx (1, 2) and without enzyme biomodification (1’, 2’). Conditions: O2-saturated PBS, pH 7.4; 20 mV s−1 scan rate; second cycle.
Thus, the biological catalyst, BOx, was immobilised on the Au and NIL/Au electrodes. When the electrochemical measurements of the biomodified electrodes (both BOx/Au and BOx/NIL/Au) were performed in O2-saturated PBS, an open-circuit potential (OCP) of O2 bio-electroreduction for both types of electrodes was recorded as 0.75 ± 0.03 V vs NHE, that is, very close to the redox equilibrium potential of the O2/H2O couple under these conditions (0.79 V vs NHE at pH 7.4, 25 °C). This indicates the high bio-electrocatalytic activity of the biomodified electrodes towards O2. Indeed, well-pronounced bio-electrocatalytic currents were measured when the CVs were recorded in the potential range of 0.24–0.84 V vs NHE (, curves 1 and 2). Maximum bio-electrocatalytic current densities (jmax) of 48 µA·cm−2 and 186 µA·cm−2 for BOx/Au and BOx/NIL/Au electrodes, respectively, were obtained. When the O2 concentration was decreased from 1.2 mM down to 0.25 mM (by saturating the PBS with air instead of oxygen) the maximum current densities of bio-electrocatalytic O2 reduction also decreased by factors of 2.7 and 3.2 for the BOx/Au and BOx/NIL/Au electrodes, respectively (Supporting Information File 1, Figures S3 and S4). This result implies the absence of a serious O2 diffusion limitation in our electrochemical systems, since in such a case the observed current decrease should be much greater (additional details can be found in Supporting Information File 1). The basic bio-electrocatalytic characteristics of BOx/Au and BOx/NIL/Au electrodes are summarised in Supporting Information File 1, Table S1. Au and NIL/Au electrodes with different surface concentrations of the enzyme (Г) were investigated electrochemically. The maximum bio-electrocatalytic signal was obtained when using 40 μg·mL−1 of BOx solution for bio-modification (Supporting Information File 1, Figures S6 and S7). Further increase in enzyme concentration suppressed the current, suggesting the formation of enzyme multilayers. These results are in good agreement with our recent report concerning the interfacial behaviour and activity of BOx immobilised on bare polycrystalline gold surfaces [20].
Thirdly, standard heterogeneous electron transfer rate constants (k0) and apparent bio-electrocatalytic constants (kcatapp, i.e., kcat for BOx adsorbed on a Au surface), were calculated based on mathematical modelling (modelled vs experimental curves are presented in Supporting Information File 1, Figure S8). k0 values for both BOx/Au and BOx/NIL/Au electrodes were found to be equal to 27 s−1. It appears that the heterogeneous electron transfer rate for the adsorbed BOx does not depend on electrode nanostructuring. These results are in excellent agreement with our previously published data concerning the influence of gold nanoparticles on enzymatic bio-electrocatalysis [24]. kcatapp values for BOx/Au and BOx/NIL/Au electrodes were found to be 30 and 39 s−1, respectively (Supporting Information File 1, Table S1), whereas kcat in homogeneous catalysis was measured to be 57 s−1 (see above). kcatapp values for BOx/Au and BOx/NIL/Au electrodes were recorded at 30 and 39 s−1, respectively (Supporting Information File 1, Table S1), whereas kcat in homogeneous solution was 57 s−1 (see above). Thus, the kcat and kcatapp values do not differ much, suggesting retention of enzymatic activity after physisorption, which is in good agreement with our recently published results [20]. Moreover, it seems as though the biocatalytic activity of adsorbed BOx does not depend on electrode nanostructuring. The overpotential for both BOx/Au and BOx/NIL/Au electrodes was found to be only approximately 0.04 V (see above) and could not be increased further due to thermodynamical constrains. Thus, one cannot explain the significant increase in bio-electrocatalytic signals after NIL just by using k0 and/or kcatapp values calculated for two different surfaces. However, when the Areal/Ageom values of Au and NIL/Au electrodes (1.7 vs 5.5, respectively) are compared with the jmax values measured for BOx/Au and BOx/NIL/Au electrodes (18 µA·cm−2 vs 58 µA·cm−2 in air-saturated and 48 µA·cm−2 vs 186 µA·cm−2 in oxygen-saturated PBS), an obvious correlation can be seen. Thus, the experimental results confirm that the improved bio-electrocatalytic currents of BOx/NIL/Au compared to BOx/Au can be simply attributed to an increase in the Areal of the electrodes.
Finally, the operational stability of the bio-modified electrodes was also investigated. The half-deactivation times of BOx/Au and BOx/NIL/Au biocathodes were found to be approximately 2 and 14 h, respectively. Thus, the current output of both Au- and NIL/Au-based biocathodes clearly decreased with time ().
Figure 3 Chronoamperometric responses from a BOx/Au electrode (1) and a BOx/NIL/Au electrode (2). Conditions: O2-saturated PBS, pH 7.4; +400 mV potential applied.
Since BOx was immobilised on the electrode simply by physical adsorption, this could be attributed to enzyme desorption from the Au surfaces. For this reason, additional qualitative (monitoring of enzyme activity in electrolytes) and quantitative (monitoring of the enzyme layer on Au surface using ellipsometry) studies were performed. In both measurements no indication of BOx desorption from the Au surface was observed. Specifically, no colour difference between the electrolyte (20 mL of PBS, pH 7.4) used in the electrochemical measurements with added enzyme substrates (5 mM ABTS and 0.25 mM O2) was observed compared to the control solution (air-saturated PBS containing 5 mM ABTS, which was not in a contact with BOx modified electrodes). However, a well-pronounced colour change developed in electrolytes that were in contact with BOx-modified electrodes during the assays. Moreover, the ellipsometry data clearly showed that after rinsing no desorption of the enzyme took place: the adsorbed amount being approximately constant with a value of approximately 2.6 pmol·cmreal−2 (Supporting Information File 1, Figure S8a). This is close to a dense monolayer of BOx on the Au surface, taking into account that the footprint of the enzyme is about 3 × 10−13 cm2. Furthermore, it was observed that the thickness of the adsorbed BOx layer gradually decreased, whereas its refractive index (i.e., its density) gradually increased (Supporting Information File 1, Figure S8b,c). This indicates a gradual flattening and compression of the enzyme layer on Au electrodes, which can be considered the origin of the eventual deactivation of the physically adsorbed BOx on bare Au surfaces, as already pointed out in our previous studies [20]. However, based on previous theoretical studies [25], since the kcatapp value for BOx/NIL/Au electrodes is higher compared to BOx/Au (39 and 30 s−1, respectively) and no enzyme desorption was observed in our investigations, the significantly improved operational stability of the nanostructured biocathodes compared to “planar” biodevices might be attributed to stabilisation of the enzyme inside nanocavities that are formed by surface nanostructuring using NIL (cf. left (a and c) and right (b and d) images).