[1]
Muhlschlegel P., Eisler H.J., Martin O.J.F., Hecht B., Pohl D.W., Resonant optical antennas, Science 2005, 308, 1607 – 09.Google Scholar
[2]
Novotny L., Effective wavelength scaling for optical antennas, Phys Rev Lett 2007, 98, 266802.Google Scholar
[3]
Novotny L., van Hulst N., Antennas for light, Nature Photon 2011, 5, 83 – 90.Google Scholar
[4]
Halas N.J., Lal S., Chang W.S., Link S., Nordlander P., Plasmons in strongly coupled metallic nanostructures, Chemical Reviews 2011, 111, 3913 – 61.Google Scholar
[5]
Bharadwaj P., Deutsch B., Novotny L., Optical antennas, Adv Opt Photon 2009, 1, 438 – 83.Google Scholar
[6]
Li J.J., Salandrino A., Engheta N., Shaping light beams in the nanometer scale: A Yagi-Uda nanoantenna in the optical domain, Phys Rev B 2007, 76, 245403.Google Scholar
[7]
Muskens O.L., Giannini V., Sanchez-Gil J.A., Rivas J.G., Optical scattering resonances of single and coupled dimer plasmonic nanoantennas, Optics Express 2007, 15, 17736 – 46.Google Scholar
[8]
Schuller J.A., Barnard E.S., Cai W., Jun Y.C., White J.S., Brongersma M.L., Plasmonics for extreme light concentration and manipulation, Nat Mater 2010, 9, 193 – 204.Google Scholar
[9]
Muskens O.L., Giannini V., Sanchez-Gil J.A., Gomez Rivas J., Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas, Nano Lett 2007, 7, 2871-75.Google Scholar
[10]
Zhang J., Fu Y., Chowdhury M.H., Lakowicz J.R., Metal-enhanced single-molecule fluorescence on silver particle monomer and dimer: Coupling effect between metal particles, Nano Lett 2007, 7, 2101 – 07.Google Scholar
[11]
Li K.R., Stockman M.I., Bergman D.J., Self-similar chain of metal nanospheres as an efficient nanolens, Phys Rev Lett 2003, 91, 227402.Google Scholar
[12]
Camden J.P., Dieringer J.A., Wang Y., et al., Probing the structure of single-molecule surface-enhanced Raman scattering hot spots, J Am Chem Soc 2008, 130, 12616 – 17.Google Scholar
[13]
Giannini V., Fernandez-Dominguez A.I., Heck S.C., Maier S.A., Plasmonic nanoantennas: Fundamentals and their use in controlling the radiative properties of nanoemitters, Chem Rev 2011, 111, 3888 – 912.Google Scholar
[14]
Farahani J.N., Pohl D.W., Eisler H.J. and Hecht B., Single quantum dot coupled to a scanning optical antenna: A tunable superemitter, Phys Rev Lett 2005, 95, 017402.Google Scholar
[15]
Link S., El-Sayed M.A., Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods, J Phys Chem B 1999, 103, 8410 – 26.Google Scholar
[16]
Fan J.A., Wu C., Bao K., et al., Self-assembled plasmonic nanoparticle clusters, Science 2010, 328, 1135 – 38.Google Scholar
[17]
Noginov M.A., Zhu G., Belgrave A.M., et al., Demonstration of spaser-based nanolaser, Nature 2009, 460, 1110 – 12.Google Scholar
[18]
Zou S.L., Schatz G.C., Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays, J Chem Phys 2004, 121, 12606 – 12.Google Scholar
[19]
Brunazzo D., Descrovi E., Olivier J.M., Narrowband optical interactions in a plasmonic nanoparticle chain coupled to a metallic film, Optics Letters 2009, 34, 1405 – 07.Google Scholar
[20]
Benson O., Assembly of hybrid photonic architectures from nanophotonic constituents, Nature 2011, 480, 193 – 99.Google Scholar
[21]
Ahn W., Boriskina S.V., Hong Y., Reinhard B.M., Photonicplasmonic mode coupling in on-chip integrated optoplasmonic molecules, ACS Nano 2012, 6, 951 – 60.Google Scholar
[22]
Ahn W., Hong Y., Boriskina S.V., Reinhard B.M., Demonstration of efficient on-chip photon transfer in self-assembled optoplasmonic networks, ACS Nano 2013, 7, 4470 – 78.Google Scholar
[23]
Hong Y., Pourmand M., Boriskina S.V., Reinhard B.M., Enhanced light focusing in self-assembled optoplasmonic clusters with subwavelength dimensions, Adv Mater 2013, 25, 115 – 19.Google Scholar
[24]
Hong Y., Qiu Y., Chen T., Reinhard B.M., Rational assembly of optoplasmonic hetero-nanoparticle arrays with tunable photonicplasmonic resonances, Adv Funct Mater 2014, 24, 739 – 46.Google Scholar
[25]
Mukherjee I., Hajisalem G., Gordon R.E., One-step integration of metal nanoparticle in photonic crystal nanobeam cavity, Optics Express 2011, 19, 22462 – 69.Google Scholar
[26]
Vecchi G., Giannini V., Gomez Rivas J., Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas, Phys Rev Lett 2009, 102, 146807.Google Scholar
[27]
Vecchi G., Giannini V., Gomez Rivas J., Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas, Phys Rev B 2009, 80, 201401.Google Scholar
[28]
Vakevainen A.I., Moerland R.J., Rekola H.T., et al., Plasmonic surface lattice resonances at the strong coupling regime, Nano Lett 2013, 14, 1721 – 27.Google Scholar
[29]
Auguié B. and Barnes W.L., Collective resonances in gold nanoparticle arrays, Phys Rev Lett 2008, 101, 143902.Google Scholar
[30]
Markel V.A., Divergence of dipole sums and the nature of non-lorentzian exponentially narrow resonances in onedimensional periodic arrays of nanospheres, J Phys B: At Mol Opt Phys 2005, 38, 115 – 21.Google Scholar
[31]
Zou S., Schatz G.C., Response to “comment on ‘silver nanoparticle array structures that produce remarkable narrow plasmon line shapes”’[J. Chem. Phys. 120, 10871 (2004)], J Chem Phys 2005, 122, 097102.Google Scholar
[32]
Markel V.A., Comment on “silver nanoparticle array structures that produce remarkably narrow plasmon line shapes”[J. Chem. Phys. 120, 10871 (2004)], J Chem Phys 2005, 122, 097101.Google Scholar
[33]
Zou S., Schatz G.C., Combining micron-size glass spheres with silver nanoparticles to produce extraordinary field enhancements for surface-enhanced raman scattering applications, Isr J Chem 2006, 46, 293 – 97.Google Scholar
[34]
Hong Y., Ahn W., Boriskina S.V., Zhao X., Reinhard B.M., Directed assembly of optoplasmonic hybrid materials with tunable photonic-plasmonic properties, J Phys Chem Lett 2015, 6, 2056 – 64.Google Scholar
[35]
Barth M., Schietinger S., Fischer S., et al., Nanoassembled plasmonic-photonic hybrid cavity for tailored light-matter coupling, Nano Lett 2010, 10, 891 – 95.Google Scholar
[36]
Devilez A., Stout B., Bonod N., Compact metallo-dielectric optical antenna for ultra directional and enhanced radiative emission, ACS nano 2010, 4, 3390 – 96.Google Scholar
[37]
Vernooy D.W., Furusawa A., Georgiadis N.P., Ilchenko V.S., Kimble H.J., Cavity QED with high-Q whispering gallery modes, Phys Rev A 1998, 57, R2293.Google Scholar
[38]
Ahn W., Boriskina S.V., Hong Y., Reinhard B.M., Electromagnetic field enhancement and spectrum shaping in plasmonically integrated optical vortices, Nano Lett 2012, 12, 219 – 27.Google Scholar
[39]
Frimmer M., Koenderink A.F., Superemitters in hybrid photonic systems: A simple lumping rule for the local density of optical states and its breakdown at the unitary limit, Phys Rev B 2012, 86, 235428.Google Scholar
[40]
Frimmer M., Koenderink A.F., Spontaneous emission control in a tunable hybrid photonic system, Phys Rev Lett 2013, 110, 217405.Google Scholar
[41]
Yan B., Boriskina S.V., Reinhard B.M., Optimizing gold nanoparticle cluster configurations (n = 7) for array applications, J Phys Chem C 2011, 115, 4578 – 83.Google Scholar
[42]
Yan B., Thubagere A., Premasiri R., Ziegler L., Dal Negro L., Reinhard B.M., Engineered SERS substrates with multiscale signal enhancement: Nanoparticle cluster arrays, ACS Nano 2009, 3, 1190 – 202.Google Scholar
[43]
Li Z., Butun S., Aydin K., Touching gold nanoparticle chain based plasmonic antenna arrays and optical metamaterials, ACS Photonics 2014, 1, 228 – 34.Google Scholar
[44]
Johnson P.B., Christy R.W., Optical constants of the noble metals, Phys Rev B 1972, 6, 4370.Google Scholar
[45]
König M., Rahmani M., Zhang L., et al., Unveiling the correlation between nanometer-thick molecular monolayer sensitivity and near-field enhancement and localization in coupled plasmonic oligomers, ACS nano 2014, 8, 9188 – 98.Google Scholar
[46]
Yan B., Boriskina S.V., Reinhard B.M., Design and implementation of noble metal nanoparticle cluster arrays for plasmon enhanced biosensing, J Phys Chem C 2011, 115, 24437 – 53.Google Scholar
[47]
Yang L., Yan B., Premasiri R.W., Ziegler L.D., Dal Negro L., Reinhard B.M., Engineering nanoparticle cluster arrays for bacterial biosensing: The role of the building block in multiscale sers substrates, Adv Funct Mater 2010, 20, 2619 – 28.Google Scholar
[48]
Arnold S. Microspheres, Photonic atoms and the physics of nothing, American Scientist 2001, 89, 414.Google Scholar
[49]
Shopova S., Blackledge C., Rosenberger A., Enhanced evanescent coupling to whispering-gallery modes due to gold nanorods grown on the microresonator surface, Appl Phys B: Laser Opt 2008, 93, 183 – 87.Google Scholar
[50]
Melnikau D., Savateeva D., Chuvilin A., Hillenbrand R., Rakovich Y.P., Whispering gallery mode resonators with J-aggregates, Optics Express 2011, 19, 22280.Google Scholar
[51]
Santiago-Cordoba M.A., Boriskina S.V., Vollmer F., Demirel M.C., Nanoparticle-based protein detection by optical shift of a resonant microcavity, Appl Phys Lett 2011, 99, 073701.Google Scholar
[52]
Baaske M.D., Foreman M.R., Vollmer F., Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform, Nat Nanotechnol 2014, 9, 933 – 39.Google Scholar
[53]
Gartia M.R., Seo S., Kim J., et al., Injection-seeded optoplasmonic amplifier in the visible, Scientific reports 2014, 4, 6168.Google Scholar
[54]
Kanaev A.V., Astratov V.N., Cai W., Optical coupling at a distance between detuned spherical cavities, Appl Phys Lett 2006, 88, 111111.Google Scholar
[55]
Xia Y.N., Yin Y.D., Lu Y., McLellan J., Template-assisted selfassembly of spherical colloids into complex and controllable structures, Adv Funct Mater 2003, 13, 907 – 18.Google Scholar
[56]
Mitsui T., Wakayama Y., Onodera T., Takaya Y., Oikawa H., Observation of light propagation across 90° corner in chains of microspheres on a patterned substrate, Optics Letters 2008, 33, 1189 – 91.Google Scholar
[57]
de Abajo F.J.G., Colloquium: Light scattering by particle and hole arrays, Rev Mod Phys 2007, 79, 1267 – 90.Google Scholar
[58]
Chen T., Pourmand M., Feizpour A., Cushman B., Reinhard B.M., Tailoring plasmon coupling in self-assembled one-dimensional au nanoparticle chains through simultaneous control of size and gap separation, J Phys Chem Lett 2013, 4, 2147 – 52.Google Scholar
[59]
Mackowski D.W., Mishchenko M.I., Calculation of the T matrix and the scattering matrix for ensembles of spheres, J Opt Soc Am A 1996, 13, 2266 – 78.Google Scholar
[60]
Le Ru E.C., Etchegoin P.G., Rigorous justification of the |E|4 enhancement factor in surface enhanced raman spectroscopy, Chemical Physics Letters 2006, 423, 63 – 66.Google Scholar