[1]

Sheppard CJR, Choudhury A. Annular pupils, radial polarization, and
superresolution. Appl Opt 2004;43:4322–7.Google Scholar

[2]

Meier M, Romano V, Feurer T. Material processing with pulsed
radially and azimuthally polarized laser radiation. Appl Phys A
2007;86:329–34.Google Scholar

[3]

Zhan Q. Trapping metallic Rayleigh particles with radial
polarization. Opt Express 2004;12:3377–82.Google Scholar

[4]

Zhan Q, Leger JR. Microellipsometer with radial symmetry. Appl Opt
2002;41:4630–7.Google Scholar

[5]

Milione G, Sztul HI, Alfano RR. Stokes polarimetry of a hybrid
vector beam from a spun elliptical core optical fiber. Complex Light and Optical
Forces IV, Proc. of SPIE 2010;7613:761305.Google Scholar

[6]

Moreno I, Davis JA, Hernandez TM, Cottrell DM, Sand D. Complete
polarization control of light from a liquid crystal spatial light modulator. Opt
Express 2012;20:364–76.Google Scholar

[7]

Maluenda D, Juvells I, Martínez-Herrero R, Carnicer A.
Reconfigurable beams with arbitrary polarization and shape distributions at a
given plane. Opt Express 2013;21:5432–9.Google Scholar

[8]

Han W, Yang Y, Cheng W, Zhan Q. Vectorial optical field generator
for the creation of arbitrarily complex fields. Opt Express
2013;21:20692–706.Google Scholar

[9]

Yu N, Genevet P, Kats MA, Aieta F, Tetienne J-P, Capasso F, Gaburro
Z. Light propagation with phase discontinuities: generalized laws of reflection
and refraction. Science 2011;334:333–7.Google Scholar

[10]

Joannopoulos JD, Villeneuve PR, Fan S. Photonic crystals: putting a
new twist on light. Nature 1997;386:143–9.Google Scholar

[11]

Liu Y, Zhang X. Metamaterials: a new frontier of science and
technology. Chem Soc Rev 2011;40:2494–507.Google Scholar

[12]

Yu N, Capasso F. Flat optics with designer metasurfaces. Nat Mater
2014;13:139–50.Google Scholar

[13]

Neu J, Krolla B, Paul O, Reinhard B, Beigang R, Rahm M.
Metamaterial-based gradient index lens with strong focusing in the THz frequency
range. Opt Express 2010;18:27748–57.Google Scholar

[14]

Olson J, Manjavacas A, Liu L, Chang W-S, Foerster B, King NS, Knight
MW, Nordlander P, Halas NJ, Link S. Vivid, full-color aluminum plasmonic pixels.
Proc Natl Acad Sci 2014;111:14348–14353.Google Scholar

[15]

Kim W-C, Park N-C, Yoon Y-J, Choi H, Park Y-P. Investigation of
near-field imaging characteristics of radial polarization for application to
optical data storage. Opt Rev 2007;14:236–42.Google Scholar

[16]

Stevens CJ, Chan CWT, Stamatis K, Edwards DJ. Magnetic metamaterials
as 1-D data transfer channels: an application for magneto-inductive waves.
microwave theory and techniques. IEEE Trans
2010;58:1248–56.Google Scholar

[17]

Bautista G, Huttunen MJ, Kontio JM, Simonen J, Kauranen M. Third-
and second-harmonic generation microscopy of individual metal nanocones using
cylindrical vector beams. Opt Express 2013;21:21918–23.Google Scholar

[18]

Chen R, Agarwal K, Sheppard CJR, Chen X. Imaging using cylindrical
vector beams in a high-numerical-aperture microscopy system. Opt Lett
2013;38:3111–4.Google Scholar

[19]

Fraine A, Uribe-Patarroyo N, Simon DS, Minaeva O, Sergienko AV.
Object identification using correlated orbital angular momentum states. Lasers
and Electro-Optics (CLEO), 2013 Conference on; 2013 9–14 June 2013; 2013.
pp. 1–2.Google Scholar

[20]

Yan J, Lu Y, Wang P, Gu C, Zheng R, Chen Y, Ming H, Zhan Q.
Improving the sensitivity of fiber-optic SPR sensor via radially polarized beam
excitation. Chin Opt Lett 2009;7:909–11.Google Scholar

[21]

Dennis MR, O’Holleran K, Padgett MJ. Chapter 5 Singular
optics: optical vortices and polarization singularities. In: Progress in Optics,
Volume 53. Elsevier, 2009. pp. 293–363.Google Scholar

[22]

Soskin MS, Vasnetsov MV. Chapter 4 Singular optics. In: Wolf E, eds.
Progress in optics, Volume 42. Amsterdam, Elsevier, 2001, pp.
219–76.Google Scholar

[23]

Zhan Q. Cylindrical vector beams: from mathematical concepts to
applications. Adv Opt Photon 2009;1:1–57.Google Scholar

[24]

Barnes WL, Dereux A, Ebbesen TW. Surface plasmon subwavelength
optics. Nature 2003;424:824–30.Google Scholar

[25]

Bharadwaj P, Deutsch B, Novotny L. Optical antennas. Adv Opt Photon
2009;1:438–83.Google Scholar

[26]

Ruan Z, Qiu M. Enhanced transmission through periodic arrays of
subwavelength holes: the role of localized waveguide resonances. Phys Rev Lett
2006;96:233901.Google Scholar

[27]

Marrucci L, Manzo C, Paparo D. Optical spin-to-orbital angular
momentum conversion in inhomogeneous anisotropic media. Phys Rev Lett
2006;96:163905.Google Scholar

[28]

Berry MV. The adiabatic phase and pancharatnam’s phase for
polarized light. J Mod Opt 1987;34:1401–7.Google Scholar

[29]

Shitrit N, Bretner I, Gorodetski Y, Kleiner V, Hasman E. Optical
spin hall effects in plasmonic chains. Nano Lett
2011;11:2038–42.Google Scholar

[30]

Huang L, Chen X, Mühlenbernd H, Li G, Bai B, Tan Q, Jin G,
Zentgraf T, Zhang S. Dispersionless phase discontinuities for controlling light
propagation. Nano Lett 2012;12:5750–5.Google Scholar

[31]

Chen X, Huang L, Mühlenbernd H, Li G, Bai B, Tan Q, Jin G,
Qiu C-W, Zhang S, Zentgraf T. Dual-polarity plasmonic metalens for visible
light. Nat Commun 2012;3:1198.Google Scholar

[32]

Gorodetski Y, Shitrit N, Bretner I, Kleiner V, Hasman E. Observation
of optical spin symmetry breaking in nanoapertures. Nano Lett
2009;9:3016–9.Google Scholar

[33]

Yu N, Genevet P, Aieta F, Kats MA, Blanchard R, Aoust G, Tetienne
JP, Gaburro Z, Capasso F. Flat optics: controlling wavefronts with optical
antenna metasurfaces. IEEE J Sel Top Quantum Electron
2013;19:4700423–4700423.Google Scholar

[34]

Aieta F, Genevet P, Kats MA, Yu N, Blanchard R, Gaburro Z, Capasso
F. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths
based on plasmonic metasurfaces. Nano Lett
2012;12:4932–6.Google Scholar

[35]

Ni X, Ishii S, Kildishev AV, Shalaev VM. Ultra-thin, planar,
Babinet-inverted plasmonic metalenses. Light Sci Appl
2013;2:e72.Google Scholar

[36]

Chen W, Abeysinghe DC, Nelson RL, Zhan Q. Plasmonic lens made of
multiple concentric metallic rings under radially polarized illumination. Nano
Lett 2009;9:4320–5.Google Scholar

[37]

Rui G, Chen W, Lu Y, Wang P, Ming H, Zhan Q. Plasmonic near-field
probe using the combination of concentric rings and conical tip under radial
polarization illumination. J Opt 2010;12:035004.Google Scholar

[38]

Chen W, Han W, Abeysinghe DC, Nelson RL, Zhan Q. Generating
cylindrical vector beams with subwavelength concentric metallic gratings
fabricated on optical fibers. J Opt 2011;13:015003.Google Scholar

[39]

Lin J, Genevet P, Kats MA, Antoniou N, Capasso F. Nanostructured
holograms for broadband manipulation of vector beams. Nano Lett
2013;13:4269–74.Google Scholar

[40]

Kraus JD, Marhefka RJ. Antennas for all Applications, 3rd ed., New
York, USA, McGraw-Hill, 2002.Google Scholar

[41]

Rui G, Nelson RL, Zhan Q. Circularly polarized unidirectional
emission via a coupled plasmonic spiral antenna. Opt Lett
2011;36:4533–5.Google Scholar

[42]

Rui G, Chen W, Abeysinghe DC, Nelson RL, Zhan Q. Beaming circularly
polarized photons from quantum dots coupled with plasmonic spiral antenna. Opt
Express 2012;20:19297–304.Google Scholar

[43]

Rui G, Nelson RL, Zhan Q. Beaming photons with spin and orbital
angular momentum via a dipole-coupled plasmonic spiral antenna. Opt Express
2012;20:18819–26.Google Scholar

[44]

Rui G, Abeysinghe DC, Nelson RL, Zhan Q. Demonstration of beam
steering via dipole-coupled plasmonic spiral antenna. Sci Rep
2013;3:7.Google Scholar

[45]

Zhao Z, Wang J, Li S, Willner AE. Metamaterials-based broadband
generation of orbital angular momentum carrying vector beams. Opt Lett
2013;38:932–4.Google Scholar

[46]

Sun S, Yang K-Y, Wang C-M, Juan T-K, Chen WT, Liao CY, He Q, Xiao S,
Kung W-T, Guo G-Y, Zhou L, Tsai DP. High-efficiency broadband anomalous
reflection by gradient meta-surfaces. Nano Lett
2012;12:6223–9.Google Scholar

[47]

Yang Y, Wang W, Moitra P, Kravchenko II, Briggs DP, Valentine J.
Dielectric meta-reflectarray for broadband linear polarization conversion and
optical vortex generation. Nano Lett 2014;14:1394–9.Google Scholar

[48]

Lin D, Fan P, Hasman E, Brongersma ML. Dielectric gradient
metasurface optical elements. Science 2014;345:298–302.Google Scholar

[49]

Liu Y, Ling X, Yi X, Zhou X, Luo H, Wen S. Realization of
polarization evolution on higher-order Poincaré sphere with metasurface.
Appl Phys Lett 2014;104:191110.Google Scholar

[50]

Yi X, Ling X, Zhang Z, Li Y, Zhou X, Liu Y, Chen S, Luo H, Wen S.
Generation of cylindrical vector vortex beams by two cascaded metasurfaces. Opt
Express 2014;22:17207–15.Google Scholar

[51]

Bouhelier A, Ignatovich F, Bruyant A, Huang C, Colas des Francs G,
Weeber JC, Dereux A, Wiederrecht GP, Novotny L. Surface plasmon interference
excited by tightly focused laser beams. Opt Lett
2007;32:2535–7.Google Scholar

[52]

Yang S, Chen W, Nelson RL, Zhan Q. Miniature circular polarization
analyzer with spiral plasmonic lens. Opt Lett
2009;34:3047–9.Google Scholar

[53]

Chen W, Abeysinghe DC, Nelson RL, Zhan Q. Experimental confirmation
of miniature spiral plasmonic lens as a circular polarization analyzer. Nano
Lett 2010;10:2075–9.Google Scholar

[54]

Wu Z, Chen W, Abeysinghe DC, Nelson RL, Zhan Q. Two-photon
fluorescence characterization of spiral plasmonic lenses as circular
polarization analyzers. Opt Lett 2010;35:1755–7.Google Scholar

[55]

Rui G, Chen W, Zhan Q. High efficiency plasmonic probe design for
parallel near-field optics applications. Opt Express
2011;19:5187–95.Google Scholar

[56]

Chen W, Nelson RL, Zhan Q. Efficient miniature circular polarization
analyzer design using hybrid spiral plasmonic lens. Opt Lett
2012;37:1442–4.Google Scholar

[57]

Chen W, Rui G, Abeysinghe DC, Nelson RL, Zhan Q. Hybrid spiral
plasmonic lens: towards an efficient miniature circular polarization analyzer.
Opt Express 2012;20:26299–307.Google Scholar

[58]

Lin J, Mueller JPB, Wang Q, Yuan G, Antoniou N, Yuan X-C, Capasso F.
Polarization-controlled tunable directional coupling of surface plasmon
polaritons. Science 2013;340:331–4.Google Scholar

[59]

Genevet P, Lin J, Kats MA, Capasso F. Holographic detection of the
orbital angular momentum of light with plasmonic photodiodes. Nat Commun
2012;3:1278.Google Scholar

[60]

Liu A, Xiong X, Ren X, Cai Y, Rui G, Zhan Q, Guo G, Guo G. Detecting
orbital angular momentum through division-of-amplitude interference with a
circular plasmonic lens. Sci Rep 2013;3:5.Google Scholar

[61]

Dolev I, Epstein I, Arie A. Surface-plasmon holographic beam
shaping. Phys Rev Lett 2012;109:203903.Google Scholar

[62]

Pégard NC, Fleischer JW. Optimizing holographic data storage
using a fractional Fourier transform. Opt Lett
2011;36:2551–3.Google Scholar

[63]

Ozaki M, Kato J-I, Kawata S. Surface-plasmon holography with
white-light illumination. Science 2011;332:218–20.Google Scholar

[64]

Grier DG. A revolution in optical manipulation. Nature
2003;424:810–6.Google Scholar

[65]

Huang L, Chen X, Mühlenbernd H, Zhang H, Chen S, Bai B, Tan
Q, Jin G, Cheah K-W, Qiu C-W, Li J, Zentgraf T, Zhang S. Three-dimensional
optical holography using a plasmonic metasurface. Nat Commun
2013;4:2808.Google Scholar

[66]

Ni X, Kildishev AV, Shalaev VM. Metasurface holograms for visible
light. Nat Commun 2013;4:2807.Google Scholar

[67]

Chen WT, Yang KY, Wang CM, Huang YW, Sun G, Chiang ID, Liao CY, Hsu
WL, Lin HT, Sun S, Zhou L, Liu AQ, Tsai DP. High-efficiency broadband
meta-hologram with polarization-controlled dual images. Nano Lett
2014;14:225–230.Google Scholar

[68]

Gibson G, Courtial J, Padgett M, Vasnetsov M, Pas’ko V,
Barnett S, Franke-Arnold S. Free-space information transfer using light beams
carrying orbital angular momentum. Opt Express
2004;12:5448–56.Google Scholar

[69]

Bhattacharya M, Meystre P. Using a Laguerre-Gaussian beam to trap
and cool the rotational motion of a mirror. Phys Rev Lett
2007;99:153603.Google Scholar

[70]

Wang H, Shi L, Lukyanchuk B, Sheppard C, Chong CT. Creation of a
needle of longitudinally polarized light in vacuum using binary optics. Nat
Photon 2008;2:501–5.Google Scholar

[71]

Hell SW. Far-field optical nanoscopy. Science
2007;316:1153–8.Google Scholar

[72]

Paterson L, MacDonald MP, Arlt J, Sibbett W, Bryant PE, Dholakia K.
controlled rotation of optically trapped microscopic particles. Science
2001;292:912–4.Google Scholar

[73]

Pors B-J, Monken CH, Eliel ER, Woerdman JP. Transport of
orbital-angular-momentum entanglement through a turbulent atmosphere. Opt
Express 2011;19:6671–83.Google Scholar

[74]

Molina-Terriza G, Vaziri A, Ursin R, Zeilinger A. Experimental
quantum coin tossing. Phys Rev Lett 2005;94:040501.Google Scholar

[75]

Cerf NJ, Bourennane M, Karlsson A, Gisin N. Security of quantum key
distribution using d-level systems. Phys Rev Lett
2002;88:127902.Google Scholar

[76]

Zhan Q, Leger J. Focus shaping using cylindrical vector beams. Opt
Express 2002;10:324–31.Google Scholar

[77]

Chen W, Zhan Q. Three-dimensional focus shaping with cylindrical
vector beams. Opt Commun 2006;265:411–7.Google Scholar

[78]

Zhao Y, Zhan Q, Zhang Y, Li Y-P. Creation of a three-dimensional
optical chain for controllable particle delivery. Opt Lett
2005;30:848–50.Google Scholar

[79]

Wang J, Chen W, Zhan Q. Engineering of high purity ultra-long
optical needle field through reversing the electric dipole array radiation. Opt
Express 2010;18:21965–72.Google Scholar

[80]

Zhan Q. Radiation forces on a dielectric sphere produced by highly
focused cylindrical vector beams. J Opt A 2003;5:
229–32.Google Scholar

[81]

Beresna M, Gecevičius M, Kazansky PG, Gertus T. Radially
polarized optical vortex converter created by femtosecond laser nanostructuring
of glass. Appl Phys Lett 2011;98:201101.Google Scholar

[82]

Chen W, Zhan Q. Creating a spherical focal spot with spatially
modulated radial polarization in 4Pi microscopy. Opt Lett
2009;34:2444–6.Google Scholar

[83]

Pfeiffer C, Grbic A. Metamaterial huygens’ surfaces:
tailoring wave fronts with reflectionless sheets. Phys Rev Lett
2013;110:197401.Google Scholar

[84]

Monticone F, Estakhri NM, Alù A. Full control of nanoscale
optical transmission with a composite metascreen. Phys Rev Lett
2013;110:203903.Google Scholar

[85]

Zhao Y, Alù A. Tailoring the dispersion of plasmonic nanorods
to realize broadband optical meta-waveplates. Nano Lett
2013;13:1086–91.Google Scholar

[86]

Pors A, Nielsen MG, Eriksen RL, Bozhevolnyi SI. Broadband focusing
flat mirrors based on plasmonic gradient metasurfaces. Nano Lett
2013;13:829–34.Google Scholar