[1]
Jalali B., Paniccia M., Reed G., Silicon photonics, IEEE Microw. Mag. 2006, 7, 58-68.Google Scholar
[2]
Wang J., Lee S.J., Ge-Photodetectors for Si-Based Optoelectronic Integration, Sensors. 2011, 11, 696-718.Google Scholar
[3]
Pavesi L., Guillot G., Optical Interconnects: The Silicon Approach (Springer Series in Optical Sciences), New York: Springer 2006.Google Scholar
[4]
Keiser G., Optical Fiber Communications, Encyclopedia of Telecommunications, John Wiley & Sons, 2003.Google Scholar
[5]
Jalali B., Yegnanarayanan S., Yoon T., Yoshimoto T., Rendina I., Coppinger F., Advances in silicon-on-insulator optoelectronics, IEEE J. Sel. Topics Quantum Electron. 1998, 4, 938-947.Google Scholar
[6]
Schaub J.D., Li R., Csutak S.M., Campbell J.C., High-speed monolithic silicon photoreceivers on high resistivity and SOI substrates, J. Lightw. Tech. 2001, 19, 272-278.Google Scholar
[7]
Casalino M., Near-Infrared Sub-Bandgap All-Silicon Photodetectors: A Review, International Journal of Optics and Applications, 2012, 2, 1-16.Google Scholar
[8]
Baker R.J., CMOS: Circuit Design, Layout, and Simulation, 3rd ed. John Wiley& Sons, Hoboken, New Jersey, USA, 2011.Google Scholar
[9]
Wanlass F.M., View M., Calif., Low Stand-by power complementary field effect circuitry, US patent 3, 356, 858, 1963.Google Scholar
[10]
Rogalski A., Infrared detectors: status and trends, Prog. Quant. Electron. 2003, 27, 59-210.Google Scholar
[11]
Libertino S., Coffa S., Benton J.L., Halliburton K., Eaglesham D.J., Formation, evolution and annihilation of interstitial clusters in ion-implanted Si, Phys. Rev. B 2001, 63, 195206:1-14.Google Scholar
[12]
Liu Y., Forrest S.R., Hladky J., Lange M.J., Olsen G.H., Ackley D.E., A planar InP/InGaAs avalanche photodiode with floating guard ring and double diffused junction, IEEE J. Lightw. Technol. 1992, 10, 182-193.Google Scholar
[13]
Elliott C.T., Day D., Wilson B.J., An integrating detector for serial scan thermal imaging, Infrared Phys. 1982, 22, 31-42.Google Scholar
[14]
Bonaccorso F., Sun Z., Hasan T., Ferrari A.C., Graphene photonics and optoelectronics, Nat. Photon. 2010, 4, 611-622.Google Scholar
[15]
Castro Neto A.H., Guinea F., Peres N.M.R., Novoselov K.S., Geim A.K., The electronic properties of graphene, Rev. Mod. Phys. 2009, 81, 109-162.Google Scholar
[16]
Bachino S.M., Strano M.S., Kittrel C., Hauge R.H., Smalley R.E., Weisman R.B., Structure-Assigned optical spectra single-walled carbon nanotubes, Science 2002, 298, 2361-2366.Google Scholar
[17]
Wang F., Dukovic G., Brus L.E., Heinz T.F., The optical resonances in carbon nanotubes arise from excitons, Science 2005, 308, 838-841.Google Scholar
[18]
Avouris P., Freitag M., Perebeinos V., Carbon-nanotube photonics and optoelectronics, Nat. Photon. 2008, 2, 341-350.Google Scholar
[19]
Kang Y.K., Liu H.D., Morse M., Paniccia M.J., Zadka M., Litski S., Sarid G., Pauchard A., Kuo Y.H., Chen H.W., Zaoui W.S., Bowers J.E., Beling A., McIntosh D.C., Zheng X.H., Campell J.C., Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product, Nat. Photon. 2009, 3, 59-63.Google Scholar
[20]
Ren F.F., Ang K.W., Song J.F., Fang Q., Yu M.B., Lo G.Q., Kwong D.L., Surface plasmon enhanced responsivity in a waveguided germanium metal-semiconductor-metal photodetector, Appl. Phys. Lett. 2010, 97, 091102.Google Scholar
[21]
Goykhman I., Desiatov B., Khurgin J., Shappir J., Levy U., Locally Oxidized Silicon Surface-Plasmon Schottky Detector for Telecom Regime, Nano Lett. 2011, 11(6), 2219–2224.Google Scholar
[22]
Novotny L., Hulst N.V., Antennas for light, Nat. Photon. 2011, 5, 83–90.Google Scholar
[23]
Tang L., Kocabas S.E., Latif S., Okyay A.K., Ly-Gagnon D.S., Saraswat K.C., Miller D.A.B., Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna, Nat. Photon. 2008, 2, 226–229.Google Scholar
[24]
Kaniewski J., Piotrowski J., InGaAs for infrared photodetectors, Physics and technology, Opto-electron. Rev. 2004, 12, 139-148.Google Scholar
[25]
Olsen G.H., Cohen M.J., Applications of near-infrared imaging, Proc. SPIE 1998, 3379, 300-306.Google Scholar
[26]
Olsen G.H., Lange M.J., Cohen M.J., Kim D.S., Forrest S.R., Threeband 1.0-2.5 um near-infrared InGaAs detector array, Proc. SPIE 1994, 2235, 151-159.Google Scholar
[27]
Gyuro I., MOVPE for InP-based optoelectronic device application, III-Vs Rev. 1996, 9, 30-35.Google Scholar
[28]
Roelkens G., Brouckaert J., Thourhout D.V., Baets R., Notzel R., Smit M., Integration of InP/InGaAsP photodetectors onto silicon-on-insulator waveguide circuits, Opt. Express 2005, 13, 10102-10108.Google Scholar
[29]
Roelkens G., Thourhout D.V., Baets R., Notzel R., Smit M., Laser emission and photodetection in an InP/InGaAsP layer integrated on and coupled to a silicon-on-insulator waveguide circuit, Opt. Express 2006, 14, 8184-8159.Google Scholar
[30]
Periner E., Guttzeit A., Wehmann H.H., The effect of threading dislocations on optical absorption and electron scattering in strongly mismatched heteroepitaxial III-V compound semiconductors on silicon, J. Phys. Condens. Matter 2002, 14, 13195-13201.Google Scholar
[31]
Sun Y.T., Baskar K., Lourdudoss S., Thermal strain in indium phosphide on silicon obtained by epitaxial lateral growth, J. Appl. Phys. 2003, 94, 2746-2748.Google Scholar
[32]
Mi Z., Yang J., Bhattacharya P., Chan P.K.L., Pipe K.P., High Performance self-organized In(Ga)As quantum dot lasers monolithically grown on silicon, Proc. SPIE 2006, 6125, 612506.Google Scholar
[33]
Seo S.W., Cho S.Y., Huang S., Shin J.J., Jokerst N.M., Brown A.S., Brooke M.A., High-speed large area inverted InGaAs thin-film metal-semiconductor-metal photodetector, IEEE J. Sel. Topics Quantum Electron. 2004, 10, 686-693.Google Scholar
[34]
Sheng Z., Liu L., Brouckaert J., He S., Throurhout D.V., InGaAs PIN photodetectors integrated on silicon-on-insulator waveguide, Opts. Express 2010, 18, 1756-1761.Google Scholar
[35]
Brouckaert J., Roelkens G., Thourhout D.V., Baets R., Thin-film III-V photodetectors integrated on silicon-on-insulator photonic ICs, J. Lightw. Technol. 2007, 25, 1053-1060.Google Scholar
[36]
Maruyama T., Okumura T., Arai S., Direct wafer bonding of GaInAsP/InP membrane structure on silicon-on-insulator substrate, Jpn. J. Appl. Phys. 2006, 45, 8717-8718.Google Scholar
[37]
Roelkens G., Brouckaert J., Thourhout D.V., Baets R., Notzel R., Smit M., Adhesive Bonding of InP/InGaAsP dies to process silicon-on-insulator wafers using DVS-bis-benzocyclobutene, J. Electronchem. Soc. 2006, 153, G1015-G1019.Google Scholar
[38]
Feng S.Q., Geng Y., Lau K.M., Poon A.W., Epitaxial III-V-on-silicon waveguide butt-coupled photodetectors, Optics Letters 2002, 37, 4035-4037.Google Scholar
[39]
Effenberger F.J., Joshi A.M., Ultrafast, Dual-Depletion Region, InGaAs/InP p-i-n detector, J. Lightw. Technol. 1996, 14, 1859-1864.Google Scholar
[40]
Dentai A.G., Kuchibhotla R., Campbell J.C., Tsai C., Lei C., High quantum efficiency long-wavelength InP/InGaAs microcavity photodiode, Electron. Lett. 1991, 27, 2125-2127.Google Scholar
[41]
Kjellman J.O., Sugiyama M., Nakano Y., Near-infrared electroluminescence and photo detection in InGaAs p-i-n microdisks grown by selective area growth on silicon, Appl. Phys. Lett. 2014, 104, 241103-241105.Google Scholar
[42]
Julian B.D., Schumacher H., InGaAs Metal-Semiconductor-Metal Photodetectors for Long wavelength Optical Communications, IEEE J. Quantum Electron. 1991, 27, 737-752.Google Scholar
[43]
Schumacher H., LeBlanc H.P., Scoole J., Bhat R., An investigation of the optoelectronic response of GaAs/InGaAs MSM photodetectors, IEEE Electron. Devices Lett. 1988, 9, 607-609.Google Scholar
[44]
Kikuchi T., Ohno H., Hasegawa H., In0.53Ga0.47As metalsemiconductor-metal photodiodes using a lattice mismatched AlGaAs Schottky assist layer, Electron. Lett. 1988, 24, 1208-1210.Google Scholar
[45]
Scoole J.B.D., Schumacher H., LeBlanc H.P., Bhat R., Koza M.A., High-speed performance of OMCVD grown InAlAs/InGaAs MSM photodetectors at 1.5 μm and 1.3 μm wavelengths, IEEE Photon. Technol. Lett. 1989, 1, 250-252.Google Scholar
[46]
Griem H.T., Ray S., Freeman J.L., West D.L., Long-wavelength (1.0-1.6 μm) In0.52Al0.48As/In0.53(GaxAl1–x)0.47As/In0.53Ga0.47As metalsemiconductor-metal photodetector, Appl. Phys. Lett. 1990, 56, 1067-1068.Google Scholar
[47]
Kim J.H., Griem H.T., Friedman R.A., Chan E.Y., Ray S., Highperformance back-illuminated InGaAs/InAlAs MSM photodetector with a record responsivity of 0.96A/W, IEEE Photon. Technol. Lett. 1992, 4, 1241-1244.Google Scholar
[48]
Onat B.M., Gokkavas M., Ozbay E., Ata E.P., Towe E., Unlu M.S., 100-GHz resonant cavity enhanced Schottky photodiodes, IEEE Photon. Technol. Lett. 1998, 10, 707-709.Google Scholar
[49]
Ohira K., Kobayashi K., Iizuka N., Yoshida H., Ezaki M., Uemura H., Kojima A., Nakamura K., Furuyama H., Shibata H., On-chip optical interconnection by using integrated III-V laser diode and photodetector with silicon waveguide, Opt. Express 2010, 18, 15440-15447.Google Scholar
[50]
Cheng Y.P., Ikku Y., Takenaka M., Takagi S., InGaAs MSM photodetector monolithically integrated with InP photonic-wire waveguide on III-V CMOS, IEICE Electronic Express 2014, 11, 1-8.Google Scholar
[51]
Othman M.A., Taib S.N., Husain M.N., Napiah Z.A.F.M., Reviews on avalanche photodiode for optical communication technology, APRN Journal of Engineering and Applied Sciences 2014, 9, 35-44.Google Scholar
[52]
Biber A., Seitz P., Jackel H., Avalanche Photodiode image Sensor in Standard BiCMOS Technology, IEEE Trans. Electron Devices 2000, 47, 2241-2243.Google Scholar
[53]
Campbell J.C., Recent Advances in Telecommunications Avalanche Photodiodes, J. Lightw. Technol. 2007, 25, 109-121.Google Scholar
[54]
Hyun K.S., Paek Y., Kwon Y.H., Yun I., Lee E.H., High Speed and High Reliability InP/InGaAs Avalanche Photodiode for Optical Communications, Proc. SPIE. 2003, 130-137.Google Scholar
[55]
Kuchigbotla R., Campell J.C., Tsai C., Tsang W.T., Choa F.S., Delta-doped SAGM avalanche photodiodes, IEEE Trans. Electron Devices 1991, 38, 2705-2706.Google Scholar
[56]
Watanabe I., Sugou S., Ishikawa H., Anan T., Makita K., Tsuji M., Taguchi K., High-speed and low-darkcurrent flip-chip InAlAs/InAlGaAs quaternary well superlattice APDs with 120 GHz gain-bandwidth product, IEEE Photon. Technol. Lett. 1993, 5, 675-677.Google Scholar
[57]
Ackley D.E., Hladky J., Lange M.J., Mason S., Erickson G., Olsen G.H., Ban V.S., Liu Y., Forrest S.R., InGaAs/InP floating guard ring avalanche photodiodes fabricated by double diffusion, IEEE Photo. Technol. Lett. 1990, 2, 571-573.Google Scholar
[58]
Huang J., Banerjee K., Ghosh S., Hayat M.M., Dual-carrier High-Gain Low-noise Superlattice Avalanche Photodiodes, IEEE Trans. Electron Devices 2013, 60, 2296-2302.Google Scholar
[59]
Tarof L.E., Knight D.G., Fox K.E., Miner C.J., Puetz N., Kim H.B., Planar InP/InGaAs avalanche photodetectors with partial charge sheet in device periphery, Appl. Phys. Lett. 1990, 57, 670-672.Google Scholar
[60]
Nada M., Yokoyama H., Muramoto Y., Ishibashi T., Matsuzaki H., 50-Gbit/s vertical illumination avalanche photodiode for 400-Gbit/s Ethernet systems, Opt. Express 2014, 22, 14681-14687.Google Scholar
[61]
Valivarthi R., Lucio-Martinez I., Rubenok A., Chan P., Marsili F., Verma V.B., Shaw M.D., Stern J.A., Slater J.A., Oblak D., Nam S.W., Tittel W., Efficient Bell state analyzer for time-bin qubits with fast-recovery Wsi superconducting single photon detectors, Opt. Express 2014, 22, 24497-24506.Google Scholar
[62]
Michel J., Liu J.F., Kimerling L.C., High-performance Ge-on-Si Photodetectors, Nat. Photon. 2010, 4, 527-534.Google Scholar
[63]
Luryi S., Kastalsky A., Bean J.C., New infrared detector on a silicon chip, IEEE Trans. Electron. Dev. 1984, ED-31, 1135–1139.Google Scholar
[64]
Fitzgerald E.A., Dislocations in strained-layer epitaxy — theory, experiment, and applications, Mater. Sci. Rep. 1991, 7, 87–140.Google Scholar
[65]
Samavedam S.B., Currie M.T., Langdo T.A., Fitzgerald E.A., High-quality germanium photodiodes integrated on silicon substrates using optimized relaxed graded buffers, Appl. Phys. Lett. 1998, 73, 2125–2127.Google Scholar
[66]
Isaacson D.M., Dohrman C.L., Fitzgerald E.A., Deviations from ideal nucleation-limited relaxation in high-Ge content compositionally graded SiGe/Si, J. Vac. Sci. Technol. B 2006, 24, 2741–2747.Google Scholar
[67]
Baribeau J.M., Jackman T.E., Houghton D.C., Maigne P., Denhoff M.W., Growth and characterization of Si1–xGex and Ge epilayers on (100) Si, J. Appl. Phys. 1988, 63, 5738–5746.Google Scholar
[68]
Luan H.C., Lim D.R., Lee K.K., Chen K.M., Sandland J.G., Wada K., Kimerling L.C., High-quality Ge epilayers on Si with low threading dislocation densities, Appl. Phys. Lett. 1999, 75, 2909–2911.Google Scholar
[69]
Ishikawa Y., Wada K., Cannon D.D., Liu J.F., Luan H.C., Kimerling L.C., Strain-induced band gap shrinkage in Ge grown on Sisubstrate, Appl. Phys. Lett. 2003, 82, 2044–2046.Google Scholar
[70]
Liu J.F., Cannon D.D., Wada K., Ishikawa Y., Danielson D.T., Jongthammanurak S., Michel J., Kimerling L.C., Deformation potential constants of biaxially tensile stressed Ge epitaxial films on Si(100), Phys. Rev B 2004, 70, 155309.Google Scholar
[71]
Liu J.F., Cannon D.D., Wada K., Ishikawa Y., Jongthammanurak S., Danielson D.T., Michel J., Kimerling L.C., Tensile strained Ge p-i-n photodetectors on Si platform for C and L band telecommunications, Appl. Phys. Lett. 2005, 87, 011110.Google Scholar
[72]
Fang Y.Y., Tolle J., Roucka R., Chizmeshya A.V.G., Kouvetakis J., Dcosta V.R., Menendez J., Perfectly tetragonal, tensile-strained Ge on Ge1–ySny buffered Si(100), Appl. Phys. Lett. 2007, 90, 061915.Google Scholar
[73]
Takeuchi S., Shimura Y., Nakatsuka O., Zaima S., Ogawa M., Sakai A., Growth of highly strain-relaxed Ge1–xSnx/virtual Ge by a Sn precipitation controlled compositionally step-graded method, Appl. Phys. Lett. 2008, 92, 231916.Google Scholar
[74]
Nayfeh A., Chui C.O., Saraswat K.C., Yonehara T., Effects of hydrogenannealing on heteroepitaxial-Ge layers on Si: Surface roughness and electrical quality, Appl. Phys. Lett. 2004, 85, 2815–2817.Google Scholar
[75]
Huang Z.H., Oh J., Campbell J.C., Back-side-illuminated highspeed Ge photodetector fabricated on Si substrate using thin SiGe buff erlayers, Appl. Phys. Lett. 2004, 85, 3286–3288.Google Scholar
[76]
Osmond J., Isella G., Kaufmann R., Acciarri M., Kanel H.V., Ultralow dark current Ge/Si(100) photodiodes with low thermal budget, Appl. Phys. Lett. 2009, 94, 201106.Google Scholar
[77]
Liu J.F., Michel J., Giziewicz W., Pan D., Wada K., Cannon D.D., Jongthammanurak S., Danielson D.T., Kimerling L.C., Chen J., Ilday F.O., Kartner F.C., Yasaitis J., High-performance, tensilestrained Ge p-i-n photodetectors on a Si platform, Appl. Phys. Lett. 2005, 87, 103501.Google Scholar
[78]
Dosunmu O.I., Cannon D.D., Emsley M.K., Kimerling L.C., Unlu M.S., High speed resonant cavity enhanced Ge photodetectors on reflecting Si substrates for 1550 nm operation, IEEE Photon. Technol. Lett. 2005, 17, 175-177.Google Scholar
[79]
Ahn D., Hong C.Y., Liu J.F., Giziewicz W., Beals M., Kimerling L.C., Michel J., Chen J., Kartner F.X., High performance, waveguide integrated Ge photodetectors, Opt. Express 2007, 15, 3916-3921.Google Scholar
[80]
Feng D., Liao S.R., Dong P., Feng N.N., Liang H., Zheng D.W., Kung C.C., Fong J., Shafiiha R., Cunningham J., Krishnamoorthy A.V., Asghari M., High-speed Ge photodetector monolithically integrated with large cross-section silicon-on-insulator waveguide, Appl. Phys. Lett. 2009, 95, 261105.Google Scholar
[81]
Vivien L., Osmond J., Fedeli J.M., Marris-Morini D., Crozat P., Damlencourt J.F., Cassan E., Lecunff Y., Laval S., 42 GHz p.i.n germanium photodetector integrated in a silicon-on-insulator waveguide, 2009, 17, 6252-6257.Google Scholar
[82]
Beals M., Michel J., Liu J.F., Ahn D.H., Sparacin D., Sun R., Hong C.Y., Kimerling L.C., Pomerene A., Carothers D., Beattie J., Kopa A., Apsel A., Rasra M.S., Gill D.M., Patel S.S., Tu K.Y., Chen Y.K., White A.E., Process flow innovations for photonic device integration in CMOS, Proc. SPIE. 2008, 6898, 689804.Google Scholar
[83]
Zhang D.L., Xue C.L., Cheng B.W., Su S.J., Liu Z., Zhang X., Zhang G.Z., Li C.B., Wang Q.M., High-responsivity GeSn short-wave infrared p-i-n photodetectors, Appl. Phys. Lett. 2013, 102, 141111.Google Scholar
[84]
Tseng H.H., Li H., Mashanov V., Yang Y.J., Cheng H.H., Chang G.E., Soref R.A., Sun G., GeSn-based p-i-n photodiodes with strained active layer on a Si wafer, Appl. Phys. Lett. 2013, 103, 231907.Google Scholar
[85]
Rouviere M., Vivien L., Roux Le X., Mangeney J., Crozat P., Hoarau C., Cassan E., Pascal D., Laval S., Fedeli J.M., Damlencourt J.F., Hartmann J.M., Kolev S., Ultrahigh speed germanium-onsilicon-on-insulator photodetectors for 1.31 and 1.55 μm operation, Appl. Phys. Lett. 2005, 87, 231109.Google Scholar
[86]
Oh J., Banerjee S.K., Campell J.C., Metal-germanium-metal photodetectors on heteroepitaxial Ge-on-Si with amorphous Ge Schottky barrier enhancement layers, IEEE Photon. Technol. Lett. 2004, 16, 581-583.Google Scholar
[87]
Laih L.H., Chang T.C., Chen Y.A., Tsay W.C., Hong J.W., Characteristics of MSM photodetectors with trench electrodes on P-type Si wafer, IEEE Trans. Electron. Device. 1998, 45, 2018-2023.Google Scholar
[88]
Ang K.W., Zhu S.Y., Wang J., Chua K.T., Yu M.B., Lo G.Q., Kwong D.L., Novel Silicon-Carbon (Si:C) Schottky barrier enhancement layer for dark-current suppression in Ge-on-SOI MSM photodetectors, IEEE Electron Dev. Lett. 2008, 7, 704-707.Google Scholar
[89]
Ang K.W., Zhu S.Y., Yu M.B., Lo G.Q., Kwong D.L., High-Performance Waveguide Ge-on-SOI metal-semiconductor-metal photodetectors with novel silicon-carbon (Si:C) Schottky barrier enhancement layer, IEEE Photon. Technol. Lett. 2008, 29, 754-756.Google Scholar
[90]
Zhang H., Lee S.J., Loh W.Y., Wang J., Chua K.T., Yu M.B., Cho B.J., Lo G.Q., Kwong D.L., Dark-current suppression in metalgermanium-metal photodetectors through dopant-segregation in NiGe-Schottky barrier, IEEE Electron Dev. Lett. 2008, 29. 161-164.Google Scholar
[91]
Ang K.W., Zhu S.Y., Wang J., Chua K.T., Yu M.B., Lo G.D., Kwong D.L., Novel NiGe MSM photodetector featuring asymmetrical Schottky barriers using sulfur co-implantation and segregation, IEEE Electron Dev. Lett. 2008, 29, 704-707.Google Scholar
[92]
Harris N.C., Baehr J.T., Lim A.E.J., Liow T.Y., Lo G.D., Hochberg M., Noise Characterization of a waveguide-coupled MSM photodetector exceeding unity quantum efficiency, IEEE J. Lighw. Technol. 2013, 31, 23-27.Google Scholar
[93]
People R., Physics and applications of GexSi1–x/Si strainedlayer heterostructures, IEEE J. Quantum Electron. 2003, 22, 1696-1710.Google Scholar
[94]
Pearsall T.P., Temkin H., Bean J.C., Luryi S., Avalanche gain in GexSi1–x/Si infrared waveguide detectors, IEEE Electron Dev. Lett. 2005, 7, 330-332.Google Scholar
[95]
Assefa S., Xia F.N., Vlasov Y.A., Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects, Nature 2010, 464, 80-84.Google Scholar
[96]
Shim J., Kang D.H., Yoo G.W., Hong S.T., Jung W.S., Kuh B.J., Lee B., Shin D., Ha K., Kim G.S., Yu H.Y., Baek J.W., Park J.H., Germanium p-i-n avalanche photodetector fabricated by point defect healing process, Opt. Lett. 2014, 39, 4204-4207.Google Scholar
[97]
Virot L., Crozat P., Fedeli J.M., Hartmann J.M., Morini D.M., Eric C., Boeuf F., Vivien L., Germanium avalanche receiver for low power interconnects, Nat. Commun. 2014, 4, 4957.Google Scholar
[98]
Kim I.G., Jang K.S., Joo J., Kim S.H., Kim S.G., Choi K.W., Oh J.H., Kim S.A., Lim G.G., High-performance photoreceivers based on vertical-illumination type Ge-on-Si photodetectors operating up to 43 Gb/s at λ ∼1550 nm, Opt. Express 2013, 21, 30716-30723.Google Scholar
[99]
Chatterjee A., Mongkolkachit P., Bhuva B., Verma A., All Si-Based Optical Interconnect for Interchip Signal Transmission, IEEE Photon. Technol. Lett. 2003, 15, 1663-1666.Google Scholar
[100]
Fan H.Y., Ramdas A.K., Infrared Absorption and Photoconductivity in Irradiated Silicon, J. Appl. Phys. 1959, 30, 1127-1134.Google Scholar
[101]
Wertheim G.K., Energy Levels in electron-bombarded silicon, Phys. Rev. 1957, 105, 1730-1736.Google Scholar
[102]
Wetheim G.K., Neutron-Bombardment Damage in Silicon, Phys. Rev. 1958, 111, 1500-1505.Google Scholar
[103]
Geis M.W., Spector S.J., Grein M.E., Schulein R.T., Yoon J.U., Lennon D.M., Wynn C.M., Palmacci S.T., Gan F., Kartner F.X., Lyszczarz T.M., All silicon infrared photodiodes: Photo response and effects of processing temperature, Opt. Express 2007, 15, 16886-16895.Google Scholar
[104]
Knights A., House A., MacNaughton R., Hopper F., Optical power monitoring function compatible with single chip integration on silicon-on-insulator, Proc. Of conference on Optical fiber Communication, Technical Digest Series 2003, 2, 705-706.Google Scholar
[105]
Knights A.P., Bradley J.D., Gou S.H., Jessop P.E., Silicon-oninsulator waveguide photodetector with self-ion-implantationengineered enhanced infrared response, J. Vac. Sci. Technol. A 2006, 24, 783-786.Google Scholar
[106]
Giri P.K., Mohapatra Y.N., Thermal stability of defect complexes due to high does MeV implantation in silicon, Mater. Sci. Eng. 2000, 71, 327-332.Google Scholar
[107]
Almeida V.R., Barrios C.A., Panepucci R.R., Lipson M., Foster M.A., Ouzonnov D.G., Gaeta A.L., L-optical switching on a silicon chip, Opt. Lett. 2004, 29, 2867-2869.Google Scholar
[108]
Doylend J.K., Jessop P.E., Knights A.P., Silicon photonic resonator-enhanced defect-mediated photodiode for subbandgap detection, Opt. Express 2010, 18, 14671-14678.Google Scholar
[109]
Geis M.W., Spector S.J., Grein M.E., Yoon J.U., Lennon D.M., Lyszczarz T.M., Silicon waveguide infrared photodiodes with > 35 GHz bandwidth and phototransistors with 50 A/W response, Opt. Express 2009, 17, 5193-5204.Google Scholar
[110]
Grote R.R., Padmaraju K., Bergman K., 10 Gb/s Error-Free Operation of All-Silicon Ion-Implanted-Waveguide Photodiodes at 1.55 um, IEEE Photon. Technol. Lett. 2013, 25, 67-71.Google Scholar
[111]
Crouch C.H., Carey J.E., Shen M., Mazur E., Genin F.Y., Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation, Appl. Phys. A 2004, 79, 1635-1641.Google Scholar
[112]
Wu C., Crouch C.H., Zhao L., Carey J.E., Younkin R., Levinson J.A., Mazur E., Farrell R.M., Gothoskar P., Karger A., Near-unity below-band gap absorption by microstructured silicon, Appl. Phys. Lett. 2001, 78, 1850-1852.Google Scholar
[113]
Allen F.C., Gobeli G.W., Work Function, photoelectric threshold, and surface states of atomically clean silicon, Phys. Rev. 1962, 127, 150-158.Google Scholar
[114]
Chiarotti G., Nannarone S., Chiaradia P., Optical Absorption of Surface States in Ultrahigh Vacuum Cleaved (111) Surfaces of Ge and Si. Phys. Rev. B 1971, 4, 3398-3402.Google Scholar
[115]
Chiarotti G., Del Signore G., Nannarone S., Optical Detection of Surface States on Cleaved (111) surfaces of Ge. Phys. Rev. Lett. 1968, 21, 1170-1172.Google Scholar
[116]
Baehr-Jones T., Hochberg M., Scherer A., Photodetection in silicon beyond the band edge with surface states, Opt. Express 2008, 16, 1659-1668.Google Scholar
[117]
Chen H., Luo X., Poon A.W., Cavity-enhanced photocurrent generation by 1.55 um wavelengths linear absorption in a p-i-n diode embedded silicon microring resonator, Appl. Phys. Lett. 2009, 95, 171111-171113.Google Scholar
[118]
Bortolani V., Calandra C., Sghedoni A., Surface states in Si. Phys. Letters A 1971, 34, 193-194.Google Scholar
[119]
Kosonocky W.F., Shallcross F.V., Villani T.S., 160 × 244 element PtSi Schottky-barrier IR-CCD image sensor, IEEE Trans. Electron Dev. 1985, ED-32(8), 1564.Google Scholar
[120]
Casalina M., Sirleto L., Moretti L., Della Corte F., Rendina I., Design of a silicon resonant cavity enhanced photodetector based on the internal photoemission effect at 1.55 um, J. Opts. A: Pure and applied optics 2006, 8, 909-913.Google Scholar
[121]
Casalino M., Sirleto L., Moretti L., Rendina I., A silicon compatible resonant cavity enhanced photodetector at 1.55 um, Semicond. Sci. Technol. 2008, 23, 075001:1-7.Google Scholar
[122]
Elabd H., Villani T., Kosonocky W.F., Palladium-silicide Schottky-Barrier IR-CCD for SWIR applications at intermediate temperatures, IEEE Trans. Electron Dev. Lett. 1982, EDL-3, 89-90.Google Scholar
[123]
Lee M.K., Chu C.H., Wang Y.H., 1.55 um and infrared-band photoresponsivity of a Schottky barrier porous silicon photodetector, Opt. Lett. 2001, 26, 160-162.Google Scholar
[124]
Casalino M., Sirleto L., Iodice M., Saffioti N., Gioffre M., Rendina I., Coppola G., Cu/p-Si Schottky barrier-based near infrared photodetector integrated with a silicon-on-insulator waveguide, Appl. Phys. Lett. 2010, 96, 241112-241114.Google Scholar
[125]
Zhu S., Lo G.Q., Kwong D.L., Low-cost and high gain silicide Schottky-barrier collector phototransistor integrated on Si waveguide for infrared detection, Appl. Phys. Lett. 2008, 93, 071108.Google Scholar
[126]
Zhu S., Lo G.Q., Kwong D.L., Low-cost and High-Speed SOI Waveguide-Based Silicide Schottky-Barrier MSM Photodetectors for Broadband Optical Communications, IEEE Photon. Technol. Lett. 2008, 20, 1396-1398.Google Scholar
[127]
Zhu S., Yu M.B., Lo G.Q., Kwong D.L., Near-infrared waveguidebased nickel silicide Schottky-barrier photodetector for optical communications, Appl. Phys. Lett. 2008, 92, 081103.Google Scholar
[128]
Boggess T.F., Bohnert K.M., Mansour K., Moss S.C., Boyd I.W., Smirl A.L., Simultaneous measurement of two-photon coefficient and free-carrier cross section above the bandgap of crystalline silicon, IEEE J. Quantum Electron. 1986, 22, 360-368.Google Scholar
[129]
Reintjes J.F., McGroddy J.C., Indirect two-photon transition in Si at um. Phys. Rev. Lett. 1973, 30, 901-903.Google Scholar
[130]
Dinu M., Quochi F., Garcia H., Third-order nonlinearities in silicon at telecom wavelengths, Appl. Phys. Lett. 2003, 82, 2954-2956.Google Scholar
[131]
Cowan A.R., Rieger G.W., Young J.F., Nonlinear transmission of 1.5 um pulses through single-mode silicon-on-insulator waveguide structures, Opt. Express 2004, 12, 1611-1621.Google Scholar
[132]
Liang T.K., Tsang H.K., Day I.E., Drake J., Knights A.P., Asghari M., Silicon waveguide two-photon absorption detector at 1.5 um wavelength for autocorrelation measurements, Appl. Phys. Lett. 2002, 81, 1323-1325.Google Scholar
[133]
Tanabe T., Nishiguchi K., Kuramochi E., Notomi M., Low power and fast elecro-optic silicon modulator with lateral p-i-n embedded photonic crystal nanocavity, Opt. Express 2009, 17, 22505-22513.Google Scholar
[134]
Chen H., Poon A.W., Two-photon absorption photocurrent in p-i-n diode embedded silicon microdisk resonantors, Appl. Phys. Lett. 2010, 96, 191106.Google Scholar
[135]
Kikuchi K., Highly sensitive interferometric autocor-relator using Si avalanche photodiode as two-photon absorber, IEEE Elec. Lett. 1998, 34, 123-125.Google Scholar
[136]
Kikuchi K., Optical sampling system at 1.5 μm using two photon absorption in Si avalanche photodiode, IEEE Elec. Lett. 1998, 34, 1354-1355.Google Scholar
[137]
Salem R., Murphy T.E., Polarization-insensitive cross correlation using two-photon absorption in a silicon photodiode, Opt. Lett. 2004, 29, 1524-1526.Google Scholar
[138]
Tanaka Y., Sako N., Kurokawa T., Profilometry based on twophoton absorption in a silicon avalanche photodiode, Opt. Lett. 2003, 28, 402-404.Google Scholar
[139]
Shi B., Liu X., Chen Z., Jia G., Cao K., Zhang Y., Wang S., Ren C., Zhao J., Anisotropy of photocurrent for two-photon absorption photodetector made of hemispherical silicon with (110) plane, Appl. Phys. B 2008, 93, 873-877.Google Scholar
[140]
Lawson W.D., Nielson S., Putley E.H., Young A.S., Preparation and properties of HgTe and mixed crystal of HgTe-CdTe, J. Phys. Chem. Solids. 1959, 9 325-329.Google Scholar
[141]
Norton P., HgCdTe infrared detectors, Opto-electron. Rev. 2002, 10, 159-174.Google Scholar
[142]
Scott M.W., Energy gap in Hg1–xCdxTe by optical absorption, J. Appl. Phys. 1969, 40, 4077-4081.Google Scholar
[143]
Verie C., Raymond F., Besson J., Nquyen Duy T., Bandgap spin-orbit splitting resonance effects in Hg1–xCdxTe alloys, J. Cryst. Growth. 1982, 59, 342-346.Google Scholar
[144]
Wu O.K., Rajavel R.D., deLyon T.J., Jensen J.E., Jack M.D., Kosai K., Chapman G.R., Sen S., Baumgratz B.A., MBE-grown HgCdTe multi-layer heterojunction structures for high speed low noise 1.3–1.6 μm avalanche photodetectors, J. Electron. Mater. 1997, 26, 488-492.Google Scholar
[145]
deLyon T.J., Baumgratz B.A., Chapman G.R., Gordon E., Gorwitz M.D., Hunter A.T., Jack M.D., Jensen J.E., Johnson W., Kosai K., Larsen W., Olson G.L., Walker S.B., Epitaxial growth of HgCdTe 1.55 μm avalanche photodiodes by MBE, Proceedings of SPIE 1999, 3692, 256.Google Scholar
[146]
deLyon T.J., Rajavel R.D., Jensen J.E., Wu O.K., Johnson S.M., Cockrum C.A., Venzor G.M., Heteroepitaxy of HgCdTe (112) infrared detector structures on Si (112) substrates by molecular beam epitaxy, J. Electron. Mater. 1996, 25, 1341-1346.Google Scholar
[147]
Wijewarnasuriya P.S., Zandian M., Edwall D.D., McLevige M.V., Chen C.A., Pasko J.G., Hildebrandt H., Chen A.C., Arias J.M., D’Souza A.I., Rujirawat S., Sivananthan S., MBE p-on-n Hg1xCdxTe heterostructure detectors on silicon substrates, J. Electron. Mater. 1998, 27, 546-549.Google Scholar
[148]
Koppens H.L., Mueller T., Avouris Ph., Ferrari A.C., Vitiello M.S., Polini M., Photodetectors based on graphene, other twodimensional materials and hybrid systems, Nat. Nanotechnology 2014, 9, 780-789.Google Scholar
[149]
Gan X.T., Shiue R.J., Gao Y.D., Meric I., Heinz T.F., Shepard K., Hone J., Assefa S., Englund D., Chip-integrated ultrafast graphene photodetector with high responsivity, Nat. Photon. 2013, 7, 883-887.Google Scholar
[150]
Pospischil A., Humer M., Furchi M.M., Backmann D., Guider R., Fromherz T., Mueller T., CMOS-compatible graphene photodetector covering all optical communication bands, Nat. Photon. 2013, 7, 892-896.Google Scholar
[151]
Wang X.M., Cheng Z., Xu K., Tsang H.K., Xu J., High-responsivity graphene/silicon-heterostructure waveguide photodetectors, Nat. Photon. 2013, 7, 888-891.Google Scholar
[152]
Sun Z.H., Chang H.X., Graphene and Graphene-like Two-Dimensional Materials in Photodetection: Mechanisms and Methodology, ACS Nano 2014, 8, 4133-4156.Google Scholar
[153]
Nair R.R., Blake P., Grigorenko A.N., Novoselov K.S., Booth T.J., Stauber T., Peres N.M.R., Geim A.K., Fine structure constant defines visual transparency of graphene, Science 2008, 320, 1308-1308.Google Scholar
[154]
Casiraghi C., Hartschuh A., Lidorikis E., Qian H., Harutyunyan H., Gokus T., Novoselov K.S., Ferrari A.C., Rayleigh imaging of graphene and graphene layers, Nano Lett. 2007, 7, 2711-2717.Google Scholar
[155]
Shi S.F., Xu X.D., Ralph D.C., McEuen P.L., Plasmon Resonance in individual nanogap electrodes studied using graphene nanoconstrictions as photodetectors, Nano Lett. 2011, 11, 1814-1818.Google Scholar
[156]
Gao W.L., Shu J., Qiu C.Y., Xu Q.F., Excitation of plasmonic waves in graphene by guided-mode resonances, ACS Nano 2012, 6, 7806-7813.Google Scholar
[157]
Gan X.T., Mak K.F., Gao Y.D., You Y.M., Hatami F., Hone J., Heinz T.F., Englund D., Strong enhancement of light-matter interaction in graphene coupled to a photonic crystal nanocavity, Nano Lett. 2012, 12, 5626-5631.Google Scholar
[158]
Grigorenko A.N., Polini M., Novoselov K.S., Graphene plasmonics, Nat. Photonics 2012, 6, 749-758.Google Scholar
[159]
Konstantatos G., Badioli M., Gaudreau L., Osmond J., Bernechea M., Arquer F.P.G.D., Gatti F., Koppens F.H.L., Hybrid graphene-quantum dot phototransistors with ultrahigh gain, Nat. Nanotechol. 2012, 7, 363-368.Google Scholar
[160]
Draf D., Molitor F., Ensslin K., Stampfer C., Jungen A., Hierold C., Wirtz L., Spatially resolved Raman spectroscopy of single- and few-layer graphene, Nano Lett. 2007, 7, 238-242.Google Scholar
[161]
Yang L., Deslippe J., Park C.H., Cohen M.L., Louie S.G., Excitonic effects on the optical response of graphene and bilayer graphene, Phys. Rev. Lett. 2009, 103, 186802.Google Scholar
[162]
Mak K.F., Shan J., Heinz T.F., Seeing many-body effects in single- and few-layer graphene: observation of twodimensional saddle-point excitons, Phys. Rev. Lett. 2011, 106. 046401.Google Scholar
[163]
Freitag M., Low T., Xia F.N., Avouris P., Photoconductivity of biased graphene, Nat. Photonics 2013, 7, 53-59.Google Scholar
[164]
Muller T., Xia F., Freitag M., Tsang J., Avouris P., Role contacts in graphene transistors: a scanning photocurrent study, Phys. Rev. B 2009, 79, 245430.Google Scholar
[165]
Giovannetti G., Khomyakov P.A., Brocks G., Karpan V.M., Van den Brink J., Kelly P.J., Doping graphene with metal contacts, Phys. Rev. Lett. 2008, 101, 026803.Google Scholar
[166]
Lee E.J.H., Balasubramanian K., Weitz R.T., Burghard M., Kern K., Contact and edge effects in graphene devices, Nat. Nanotechnol. 2008, 3, 486-490.Google Scholar
[167]
Tielrooij K.J., Song J.C.W., Jensen S.A., Centeno A., Pesquera A., Zurutuza Elorza A., Bonn M., Levitov L.S., Koppens F.H.L., Photoexcitation cascade and multiple hot-carrier generation in graphene, Nat. Phys. 2013, 9, 248-252.Google Scholar
[168]
Johannsen J.C., Ulstrup S., Cilento F., Crepaldi A., Zacchigna M., Cacho C., Edmond Turcu I.C., Springate E., Fromm F., Raidel C., Seyller T., Parmigiani F., Grioni M., Hofmann P., Direct view of hot carrier dynamics in graphene, Phys. Rev. Lett. 2013, 111, 027403.Google Scholar
[169]
Song J.C.W., Rudner M.S., Marcus C.M., Levitov L.S., Hot carrier transport and photocurrent response in graphene, Nano Lett. 2011, 11, 4688-4692.Google Scholar
[170]
Xu X.D., Gador N.M., Alden J.S., Van der Zande A.M., McEuen P.L., Photo-thermoelectric effect at a graphene interface junction, Nano Lett. 2010, 10, 562-566.Google Scholar
[171]
Lemme M.C., Koppens F.H.L., Falk A.L., Runder M.S., Park H., Levitov L.S., Marcus C.M., Gate-activated photoresponse in a graphene p-n junction, Nano Lett. 2011, 11, 4134-4237.Google Scholar
[172]
Kim M.H., Yan J., Suess R.J., Murphy T.E., Fuhrer M.S., Drew H.D., Photothermal response in dual-gated bilayer graphene, Phys. Rev. Lett. 2013, 110, 247402.Google Scholar
[173]
Yan J., Kim M.H., Elle J.A., Sushkov A.B., Jenkins G.S., Milchberg H.M., Fuhrer M.S., Drew H.D., Dual-Gated Bilayer Graphene Hotelectron Bolometer, Nat. Nanotechnol. 2012, 7, 472-478.Google Scholar
[174]
Xia F.N., Mueller T., Lin Y.M., Garcia A.V., Avouris P., Ultrafast graphene photodetector, Nat. Nanotechnol. 2009, 4, 839-843.Google Scholar
[175]
Mueller T., Xia F.N., Avouris P., Graphene photodetectors for high-speed optical communications, Nat. Photon. 2010, 4, 297-301.Google Scholar
[176]
Kim C.O., Kum S., Shin D.H., Kang S.S., Kim J.M., Jang C.W., Joo S.S., Lee L.S., Kim J.H., Choi S.H., Hwang E., High photoresponsivity in an all-graphene p-n vertical junction photodetector, Nat. Commun. 2014, 5, 3249:1-7.Google Scholar
[177]
Liu C.H., Chang Y.C., Norris T.B., Zhong Z.H., Graphene photodetectors with ultra-broadband and high responsivity at room temperature, Nat. Commun. 2014, 9, 273-278.Google Scholar
[178]
Iijima S., Helical microtubules of graphite carbon, Nature 1991, 354, 56-58.Google Scholar
[179]
Yang L.J., Wang S., Zeng Q.S., Zhang Z.Y., Peng L.M., Carbon Nanotube photoelectronic and photovoltaic devices and their applications in infrared detection, Small 2013, 9, 1225-1236.Google Scholar
[180]
Itkis M.E., Borondics F., Yu A.P., Haddon R.C., Bolometric Infrared Photoresponse of suspended single-walled carbon nanotube films, Science 2006, 312, 413-416.Google Scholar
[181]
Koch S.W., Kira M., Khitrova G., Gibbs H.M., Semiconductor excitons in new light, Nat. Mater. 2006, 5, 523-531.Google Scholar
[182]
O’Connell M.J., Bachilo S.M., Huffman C.B., Moore V.C., Strano M.S., Haroz E.H., Rialon K.L., Boul P.J., Noon W.H., Kittrell C., Ma J.P., Hauge R.H., Band gap fluorescence from individual singlewalled carbon nanotubes, Science, 2002, 297, 593-596.Google Scholar
[183]
Ando T., Excitons in carbon nanotubes, J. Phys. Soc. Japan 1997, 66, 1066-1073.Google Scholar
[184]
Burda C., Chen X.B., Narayanan R., El-Sayed M.A., Chemistry and properties of nanocrystals of different shapes, Chem. Rev. 2005, 105, 1025-1102.Google Scholar
[185]
Scholes G.D., Rumbles G., Excitons in nanoscale systems, Nat. Mater. 2006, 5, 683-696.Google Scholar
[186]
Freitag M., Martin Y., Misewich J.A., Martel R., Avouris P.H., Photoconductivity of single carbon nanotubes, Nano Lett. 2003, 3, 1067-1071.Google Scholar
[187]
Mohite A., Gopinath P., Shah H.M., Alphenaar B.W., Exciton dissociation and stark effect in the carbon nanotube photocurrent spectrum, Nano Lett. 2008, 8, 142-146.Google Scholar
[188]
Yang L.J., Wang S., Zheng Q.S., Zhang Z.Y., Pei T., Li Y., Peng L.M., Efficient photovoltage multiplication in carbon nanotubes, Nat. Photonics 2011, 5, 672-676.Google Scholar
[189]
Perebeinos V., Tersoff J., Avouris P., Scaling of excitons in carbon nanotubes, Phys. Rev. Lett. 2004, 92, 257402.Google Scholar
[190]
Kane C.L., Mele E.J., Electron interactions and scaling relations for optical excitons in carbon nanotubes, Phys. Rev. Lett. 2004, 93, 197402.Google Scholar
[191]
Gabor N.M., Zhong Z.H., Bosnick K., Park J.W., McEuen P.L., Extremely efficient multiple electron-hole pair generation in carbon nanotube photodiodes, Science 2009, 325, 1367-1371.Google Scholar
[192]
Baer R., Rabani E., Can impact excitation explain efficient carrier multiplication in carbon nanotube photodiodes?, Nano Lett. 2010, 10, 3277-3282.Google Scholar
[193]
Prechtel L., Song L., Manus S., Schuh D., Wegscheider W., Holleitner A.W., Time-resolved picosecond photocurrents in contacted carbon nanotubes, Nano Lett. 2011, 11, 269-272.Google Scholar
[194]
St-Antoine, Menard D., Martel R., Single-walled carbon nanotube thermopile for broadband light detection, Nano Lett. 2011, 11, 609-613.Google Scholar
[195]
Lu R.T., Shi J.J., Baca F.J., Wu J.Z., High performance multiwall carbon nanotube bolometers, J. Appl. Phys. 2010, 108, 084305.Google Scholar
[196]
Arnold M.S., Zimmerman J.D., Renshaw C.K., Xu X., Lunt R.R., Austin C.M., Forrest S.R., Broad spectral response using carbon nanotube/organic semiconductor/C60 photodetectors, Nano Lett. 2009, 9, 3354-3358.Google Scholar
[197]
Lu R.T., Christianson C., Kirkeminde A., Ren S.Q., Wu J., Extraordinary photocurrent harvesting at type-II heterojunction interfaces: toward high detectivity carbon nanotube infrared detectors, Nano Lett. 2012, 12, 6244-6249.Google Scholar
[198]
Wang Q.H., Kalantar-Zadeh K., Kis A., Coleman J.N., Strano M.S., Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nat. Nanotechnol. 2012, 7, 699-712.Google Scholar
[199]
Ding Y., Wang Y.L., Ni J., Shi L., Shi S.Q., Tang W.H., First principles study of structural, vibrational and electronic properties of graphene-like MX2 (M = Mo, Nb, W, Ta; X = S, Se, Te) monolayers, Physica B 2011, 406, 2254-2260.Google Scholar
[200]
Coehoorn R., Haas C., de Groot R.A., Electronic structure of MoSe2, MoS2, and WSe2, II, The nature of the optical band gaps, Phys. Rev. B 1987, 6203-6206.Google Scholar
[201]
Buscema M., Barkelid M., Zwiller V., Van der Zant H.S.J., Steele G.A., Castellanos-Gomez A., Large and tunable photothermoelectic effect in single-layer MoS2, Nano Lett. 2013, 13, 358-363.Google Scholar
[202]
Liu F., Shimotani H., Shang H., Kanagasekaran T., Zolyomi V., Drummond N., Falko V.I., Tanigaki K., High-sensitivity photodetectors based on multilayer GaTe flakes, ACS Nano 2014, 8, 752-760.Google Scholar
[203]
Yoffe A.D., Layer compounds, Annu. Rev. Mater. Sci. 1993, 3, 147-170.Google Scholar
[204]
Xia F.N., Wang H., Xiao D., Dubey M., Ramasubrananiam A., Two-dimensional material nanophotonics, Nat. Photon. 2014, 8, 899-907.Google Scholar
[205]
Yazawa M., Koguchi M., Hiruma K., Heteroepitaxial ultrafine wire-like growth of InAs on GaAs substrates, Appl. Phys. Lett. 1991, 58, 1080-1082.Google Scholar
[206]
Xia Y., Yang P., Sun Y., Wu Y., Mayers B., Gates B., Yin Y., Kim F., Yan H., One-dimensional nanostructure: synthesis, characterization and applications, Adv. Mater. 2003, 15, 353-389.Google Scholar
[207]
Kuykendall T., Ulrich P., Aloni S., Yang P., Complete composition tunability of InGaN nanowires using a combinatorial approach, Nat. Mater. 2007, 6, 951-956.Google Scholar
[208]
Deng K.M., Li Liang, CdS nanoscale photodetectors, Adv. Mater. 2014, 26, 2619-2635.Google Scholar
[209]
Yan R.X., Gargas D., Yang P.D., Nanowire photonics, Nat. Photon. 2009, 3, 569-576.Google Scholar
[210]
Nolan M., O’Callaghan S., Fagas G., Greer J.C., Silicon nanowire band gap modification, Nano Lett. 2007, 7, 34-38.Google Scholar
[211]
Li Y., Qian F., Xiang J., Lieber C.M., Nanowire electronic and optoelectronic devices, Materials Today 2006, 9, 18-27.Google Scholar
[212]
Murray C.B., Norris D.J., Bawendi M.G., Synthesis and characterization of nearly Monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites, J. Am. Chem. Soc. 1993, 115, 8706-8715.Google Scholar
[213]
Stiff-Roberts A.D., Quantum-dot infrared photodetectors: a review, J. Nanophotonics 2009, 3, 031607.Google Scholar
[214]
Konstantatos G., Sargent E.H., Nanostructured materials for photon detection, Nat. Nanotechnol. 2010, 5, 391-400.Google Scholar
[215]
Schaller R.D., Klimov V.I., High efficiency carrier multiplication in PdSe nanocrystals: implications for solar energy conversion, Phys. Rev. Lett. 2004, 92, 186601.Google Scholar
[216]
Clark S.W., Harbold J.M., Wise F.W., Resonant energy transfer in PbS quantum dots, J. Phys. Chem. C 2007, 111, 7302-7305.Google Scholar
[217]
Nozik A.J., Multiple exciton generation in semiconductor quantum dots, Chem. Phys. Lett. 2008, 457, 3-11.Google Scholar
[218]
Clifford J.P., Konstantatos G., Johnston K.W., Hoogland S., Levina L., Sargent H., Fast, sensitive and spectrally tuneable colloidal-quantum-dot photodetectors, Nat. Nanotechnol. 2009, 4, 40-44.Google Scholar
[219]
Rauch T., Boberl M., Tedde S.F., Furst J., Kovalenko M.V., Hesser G., Lemmer U., Wolfgang H., Hayden O., Near-infrared imaging with quantum-dot-sensitized organic photodiodes, Nat. Photon. 2009, 3, 332-336.Google Scholar
[220]
Gong X., Tong M.H., Xia Y.J., Cai W.Z., Moon J.S., Cao Y., Yu G., Shieh C.L., Nilsson B., Heeger A.J., High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm, Science 2009, 325, 1665-1667.Google Scholar
[221]
Konstantatos G., Howard I., Fischer A., Hoogland S., Clifford J., Klem E., Levina L., Sargent E.H., Ultrasensitive solution-cast quantum dot photodetectors, Nature 2006, 442, 180-183.Google Scholar
[222]
Boberl M., Kovalenko M.V., Gamerith S., List E.J.W., Heiss W., Inkjet-printed nanocrystal photodetectors operating up to 3 μm wavelengths, Adv. Mater. 2007, 19, 3574-3578.Google Scholar
[223]
Martyniuk P., Rogalski A., Quantum-dot infrared photodetectors: status and outlook, Prog. Quant. Electron. 2008, 32, 89-120.Google Scholar
[224]
Knight M.W., Sobhani H., Nordlander P., Halas N.J., Photodetection with Active Optical Antennas, Science 2011, 332, 702-704.Google Scholar
[225]
Fan P.Y., Chettiar U.K., Cao L.Y., Afshinmanesh F., Engheta N., Brongersma M.L., An invisible metal–semiconductor photodetector, Nat. Photon. 2012, 6, 380–385.Google Scholar
[226]
Gu M.X., Bai P., Li E.P., Enhancing the reception of propagating surface plasmons using a nanoantenna, IEEE Photonics Technol. Lett. 2010, 22, 245-247.Google Scholar
[227]
Bai P., Gu M.X., Wei X.C., Li E.P., Electrical Detection of Plasmonic Waves Using an Ultra-compact Structure via a Nanocavity, Optics Express 2009, 17, 24349-24357.Google Scholar
[228]
Oulton R.F., Sorger V.J., Genov D.A., Pile D.F.P., Zhang X., A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation, Nat. Photon. 2008, 2, 496-500.Google Scholar
[229]
Chu H.S., Akimov Y., Bai P., Li E.P., Hybrid dielectric-loaded plasmonic waveguide and wavelength selective components for efficiently controlling light at subwavelength scale, JOSA B 2011, 28, 2895–2901.Google Scholar
[230]
Chu H.S., Bai P., Li E.P., Hoefer W.J.R., Hybrid Dielectric-Loaded Plasmonic Waveguide-Based Power Splitter and Ring Resonator: Compact Size and High Optical Performance for Nanophotonic Circuit., Plasmonics 2011, 6, 591-597.Google Scholar
[231]
Ooi K.J.A., Bai P., Gu M.X., Ang L.K. Design of a monopoleantenna-based resonant nanocavity for detection of optical power from hybrid plasmonic waveguides, Optics Express 2011, 19, 17075–17085.Google Scholar
[232]
Gu M.X., Bai P., Chu H.S., Li E.P., Design of Subwavelength CMOS Compatible Plasmonic Photodetector for Nano-Electronic-Photonic Integrated Circuits, IEEE Photonic Tech. Lett. 2012, 24, 515–517.Google Scholar
[233]
Ooi K.J.A., Bai P., Gu M.X., Ang L.K., Plasmonic coupled-cavity system for enhancement of surface plasmon localization in plasmonic detectors, Nanotechnology 2012, 23, 275201.Google Scholar
[234]
Wang F.M., Melosh N.A., Plasmonic Energy Collection through Hot Carrier Extraction, Nano Lett. 2011, 11, 5426–5430.Google Scholar
[235]
Romero I., Aizpurua J., Bryant G.W., De Abajo F.J.G., Plasmons in Nearly-Touching Metallic Nanoparticles: Singular Response in the Limit of Touching Dimers, Opt. Express 2006, 14, 9988–9999.Google Scholar
[236]
Lassiter J.B., Aizpurua J., Hernandez L.I., Brandl D.W., Romero I., Lal S., Hafner J.H., Nordlander P., Halas N.J., Close Encounters between Two Nanoshells, Nano Lett. 2008, 8, 1212–1218.Google Scholar
[237]
Zuloaga J., Prodan E., Nordlander P., Quantum Description of the Plasmon Resonances of a Nanoparticle Dimer, Nano Lett. 2009, 9, 887–891.Google Scholar
[238]
Esteban R., Borisov A.G., Nordlander P., Aizpurua J., Bridging Quantum and Classical Plasmonics with a Quantum-Corrected Model, Nat. Commun. 2012, 3, 825: 1-9.Google Scholar
[239]
Wu L., Duan H.G., Bai P., Bosman M., Yang J.K.W., Li E.P., Fowler-Nordheim Tunneling Induced Charge Transfer Plasmons between Nearly-Touching Nanoparticles, ACS Nano 2013, 7, 707–716.Google Scholar
[240]
Savage K.J., Hawkeye M.M., Esteban R., Borisov A.G., Aizpurua J., Baumberg J.J., Revealing the Quantum Regime in Tunneling Plasmonics, Nature 2012, 491, 574–577.Google Scholar
[241]
Tan S.F., Wu L., Yang J.K.W., Bai P., Bosman M., Nijhuis C.A., Quantum Plasmon Resonances Controlled by Molecular Tunnel Junctions, Science 2014, 343, 1496-1499.Google Scholar
[242]
Tame M.S., McEnery K.R., Özdemir S.K., Lee J., Maier S.A., Kim M.S., Quantum plasmonics., Nat. Phys. 2013, 9, 329–340.Google Scholar
[243]
Lee C.H., Lee G.H., Zande A.M.V.D., Chen W.C., Li Y.L., Han M.Y., Cui X., Arefe G., Nuckolls C., Heinz T.F., Guo J., Hone J., Kim P., Atomically thin p–n junctions with van der Waals heterointerfaces, Nat. Nanotech. 2014, 9, 676–681.Google Scholar