[1]
Ma L-n, Zhang J, Chen H-t, Zhou J-h, Ding YZ, Liu YS. An overview on ELISA techniques for FMD. Virology J 2011;8: Article no. 419, 9 pages.Google Scholar
[2]
Malou N, Raoult D. Immuno-PCR: a promising ultrasensitive diagnostic method to detect antigens and antibodies. Trends in Microbiol 2011;19:295–302.Google Scholar
[3]
Seibel J, Koenig S, Goehler A, Doose S, Memmel E, Bertleff N, Sauer M. Investigating infection processes with a workflow from organic chemistry to biophysics: the combination of metabolic glycoengineering, super-resolution fluorescence imaging and proteomics. Expert Rev Proteomics 2013;10:25–31.Google Scholar
[4]
Petryayeva E, Algar WR, Medintz IL. Quantum dots in bioanalysis: a review of applications across various platforms for fluorescence spectroscopy and imaging. Appl Spectrosc 2013;67:215–52.Google Scholar
[5]
Pampaloni F, Ansari N, Stelzer EHK. High-resolution deep imaging of live cellular spheroids with light-sheet-based fluorescence microscopy. Cell Tissue Res 2013;352:161–77.Google Scholar
[6]
Nicklas JA, Buel E. Quantification of DNA in forensic samples. Anal Bioanal Chem 2003;376:1160–7.Google Scholar
[7]
Ataka K, Kottke T, Heberle J. Thinner, smaller, faster: IR techniques to probe the functionality of biological and biomimetic systems. Angew Chem-Int Edit 2010;49:5416–24.Google Scholar
[8]
Brauchle E, Schenke-Layland K. Raman spectroscopy in biomedicine - non-invasive in vitro analysis of cells and extracellular matrix components in tissues. Biotechnol J 2013;8:288–97.Google Scholar
[9]
Downes A, Elfick A. Raman spectroscopy and related techniques in biomedicine. Sensors 2010;10:1871–89.Google Scholar
[10]
Culha M. Surface-enhanced raman scattering: an emerging label-free detection and identification technique for proteins. Appl Spectrosc 2013;67:355–64.Google Scholar
[11]
Bantz KC, Meyer AF, Wittenberg NJ, Im H, Kurtulus O, Lee SH, Lindquist NC, Oh SH, Haynes CL. Recent progress in SERS biosensing. Phys Chem Chem Phys 2011;13:11551–67.Google Scholar
[12]
Pahlow S, Maerz A, Seise B, Hartmann K, Freitag I, Kämmer E, Böhme R, Deckert V, Weber K, Cialla D, Popp J. Bioanalytical application of surface- and tip-enhanced Raman spectroscopy. Eng Life Sci 2012;12:131–43.Google Scholar
[13]
Negri P, Dluhy RA. Ag nanorod based surface-enhanced Raman spectroscopy applied to bioanalytical sensing. J Biophotonics 2013;6:20–35.Google Scholar
[14]
Vitol EA, Orynbayeva Z, Friedman G, Gogotsi Y. Nanoprobes for intracellular and single cell surface-enhanced Raman spectroscopy (SERS). J Raman Spectrosc 2012;43:817–27.Google Scholar
[15]
Vendrell M, Maiti KK, Dhaliwal K, Chang Y-T. Surface-enhanced Raman scattering in cancer detection and imaging. Trends Biotechnolo 2013;31:249–57.Google Scholar
[16]
Kho KW, Fu CY, Dinish US, Olivo M. Clinical SERS: are we there yet?. J Biophotonics 2011;4:667–84.Google Scholar
[17]
Joseph V, Engelbrekt C, Zhang J, Gernert U, Ulstrup J, Kneipp J. Characterizing the kinetics of nanoparticle-catalyzed reactions by surface-enhanced Raman scattering. Angew Chem-Int Edit 2012;51:7592–6.Google Scholar
[18]
Le Ru, EC, Etchegoin PG. Single-molecule surface-enhanced Raman spectroscopy. In: Johnson MA, Martinez TJ, eds. Annu Rev Phys Chem 2012;63:65–87.Google Scholar
[19]
Kneipp J, Kneipp H, Kneipp K. SERS - a single-molecule and nanoscale tool for bioanalytics. Chem Soc Rev 2008;37: 1052–60.Google Scholar
[20]
Stadler J, Schmid T, Zenobi R. Developments in and practical guidelines for tip-enhanced Raman spectroscopy. Nanoscale 2012;4:1856–70.Google Scholar
[21]
Treffer R, Boehme R, Deckert-Gaudig T, Lau K, Tiede S, Lin X, Deckert V. Advances in TERS (tip-enhanced Raman scattering) for biochemical applications. Biochem Soc T 2012;40:609–14.Google Scholar
[22]
Reparaz JS, Peica N, Kirste R, Goni AR, Wagner MR, Callsen G, Alonso MI, Garriga M, Marcus IC, Ronda A, Berbezier I, Maultzsch J, Thomsen C, Hoffmann A. Probing local strain and composition in Ge nanowires by means of tip-enhanced Raman scattering. Nanotechnology 2013;24:185704.Google Scholar
[23]
Suzuki T, Yan X, Kitahama Y, Sato H, Itoh T, Miura T, Ozaki Y. Tip-enhanced Raman spectroscopy study of local interactions at the interface of styrene-butadiene rubber/multiwalled carbon nanotube nanocomposites. J Phys Chem C 2013;117:1436–40.Google Scholar
[24]
Kurouski D, Deckert-Gaudig T, Deckert V, Lednev IK. Structural characterization of insulin fibril surfaces using Tip Enhanced Raman Spectroscopy (TERS). Biophys J 2013;104:49A–49A.Google Scholar
[25]
Love SA, Marquis BJ, Haynes CL. Recent advances in nanomaterial plasmonics: fundamental studies and applications. Appl Spectros 2008;62:346A–362A.Google Scholar
[26]
Willets KA, Van Duyne RP. Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem 2007;58:267–97.Google Scholar
[27]
Xia Y, Halas NJ. Shape-controlled synthesis and surface plasmonic properties of metallic nanostructures. MRS Bull 2005;30:338–48.Google Scholar
[28]
Haes AJ, Haynes CL, McFarland AD, Schatz GC, Van Duyne RP, Zou S. Plasmonic materials for surface-enhanced sensing and spectroscopy. MRS Bull 2005;30:368–75.Google Scholar
[29]
Schatz GC, Van Duyne RP. Electromagnetic mechanism of surface-enhanced spectroscopy. Handbook of Vibrational Spectroscopy (Wiley & Sons, Chichester) 2002;1:759–74.Google Scholar
[30]
Schmitt M, Popp J. Raman spectroscopy at the beginning of the twenty-first century. J Raman Spectros 2006;37:20–8.Google Scholar
[31]
Kudelski A. Analytical applications of Raman spectroscopy. Talanta 2008;76:1–8.Google Scholar
[32]
Petry R, Schmitt M, Popp J. Raman spectroscopy-a prospective tool in the life sciences. ChemPhysChem 2003;4:14–30.Google Scholar
[33]
Ferrari AC, Basko DM. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat Nanotechnol 2013;8:235–46.Google Scholar
[34]
Hering K, Cialla D, Ackermann K, Dörfer T, Möller R, Schneidewind H, Mattheis R, Fritzsche W, Rösch P, Popp J. SERS: a versatile tool in chemical and biochemical diagnostics. Anal Bioanal Chem 2008;390:113–24.Google Scholar
[35]
Cialla D, Maerz A, Boehme R, Theil F, Weber K, Schmitt M, Popp J. Surface-enhanced Raman spectroscopy (SERS): progress and trends. Anal Bioanal Chem 2012;403:27–54.Google Scholar
[36]
Kleinman SL, Frontiera RR, Henry A-I, Dieringer JA, Van Duyne RP. Creating, characterizing, and controlling chemistry with SERS hot spots. Phys Chem Chem Phys 2013;15:21–36.Google Scholar
[37]
Wang Y, Schluecker S. Rational design and synthesis of SERS labels. Analyst 2013;138:2224–38.Google Scholar
[38]
Bell SEJ, Sirimuthu NMS. Quantitative surface-enhanced Raman spectroscopy. Chem Soc Rev 2008;37:1012–24.Google Scholar
[39]
Smith WE. Practical understanding and use of surface enhanced Raman scattering/ surface enhanced resonance Raman scattering in chemical and biological analysis. Chem Soc Rev 2008;37:955–64.Google Scholar
[40]
Stiles PL, Dieringer JA, Shah NC, Van Duyne RP. Surface-enhanced Raman spectroscopy. Annu Rev Anal Chem 2008;1:601–26.Google Scholar
[41]
Xie W, Schluecker S. Medical applications of surface-enhanced Raman scattering. Phys Chem Chem Phys 2013;15:5329–44.Google Scholar
[42]
Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP. Biosensing with plasmonic nanosensors. Nature Mater 2008;7:442–53.Google Scholar
[43]
Graham D, Goodacre R. Chemical and bioanalytical applications of surface enhanced Raman scattering spectroscopy. Chem Soc Rev 2008;37:883–4.Google Scholar
[44]
Huh YS, Chung AJ, Erickson D. Surface enhanced Raman spectroscopy and its application to molecular and cellular analysis. Microfluidics and Nanofluidics 2009;6:285–97.Google Scholar
[45]
Fleischmann M, Hendra PJ, McQuillan AJ. Raman spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett 1974;26:163–6.Google Scholar
[46]
Albrecht MG, Creighton JA. Anomalously intense Raman spectra of pyridine at a silver electrode. J Am Chem Soc 1977;99:5215–7.Google Scholar
[47]
Jeanmaire DL, Van Duyne RP. Surface Raman spectroelectrochemistry. Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J Electroanal Chem Interf Electr 1977;84:1–20.Google Scholar
[48]
Xu H, Aizpurua J, Kaell M, Apell P. Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering. Phys Rev E: Stat, Nonlin Soft Matter Phys 2000;62:4318–24.Google Scholar
[49]
Cialla D, Petschulat J, Huebner U, Schneidewind H, Zeisberger M, Mattheis R, Pertsch T, Schmitt M, Möller R, Popp J. Investigation on the second part of the electromagnetic SERS enhancement and resulting fabrication strategies of anisotropic plasmonic arrays. ChemPhysChem 2010;11:1918–24.Google Scholar
[50]
Itoh T, Yoshida K, Biju V, Kikkawa Y, Ishikawa M, Ozaki Y. Second enhancement in surface-enhanced resonance Raman scattering revealed by an analysis of anti-Stokes and Stokes Raman spectra. Phys Rev B 2007;76:085405/085401–085405/085405.Google Scholar
[51]
Zhang WH, Fischer H, Schmid T, Zenobi R, Martin OJF. Mode-selective surface-enhanced Raman spectroscopy Using nanofabricated plasmonic dipole antennas. J Phys Chem C 2009;113:14672–5.Google Scholar
[52]
Jensen L, Aikens CM, Schatz GC. Electronic structure methods for studying surface-enhanced Raman scattering. Chem Soc Rev 2008;37:1061–73.Google Scholar
[53]
Knoll P, Marchl M, Kiefer W. Raman-spectroscopy of microparticles in laser-light traps. Indian J Pure Ap Phy 1988;26:268–77.Google Scholar
[54]
Ayars EJ, Hallen HD. Electric field gradient effects in Raman spectroscopy. Phys Rev Lett 2000;85:4180–3.Google Scholar
[55]
Otto A, Mrozek I, Grabhorn H, Akemann W. Surface-enhanced Raman scattering. J Phys: Condens Matter 1992;4:1143–212.Google Scholar
[56]
Gao X, Davies JP, Weaver MJ. Test of surface selection rules for surface-enhanced Raman scattering: the orientation of adsorbed benzene and monosubstituted benzenes on gold. J Phys Chem 1990;94:6858–64.Google Scholar
[57]
Moskovits M, Suh JS. Surface selection rules for surface-enhanced Raman spectroscopy: calculations and application to the surface-enhanced Raman spectrum of phthalazine on silver. J Phys Chem 1984;88:5526–30.Google Scholar
[58]
Brown RJC, Milton MJT. Nanostructures and nanostructured substrates for surface-enhanced Raman scattering (SERS). J Raman Spectros 2008;39:1313–26.Google Scholar
[59]
Wu D-Y, Li J-F, Ren B, Tian Z-Q. Electrochemical surface-enhanced Raman spectroscopy of nanostructures. Chem Soc Rev 2008;37:1025–41.Google Scholar
[60]
Vo-Dinh T. Surface-enhanced Raman spectroscopy using metallic nanostructures. TrAC, T Anal Chem 1998;17:557–82.Google Scholar
[61]
Vo Dinh T, Stokes DL. SERS-based Raman Probes. Handbook of Vibrational Spectroscopy (Wiley & Sons, Chichester) 2002;2:1302–17.Google Scholar
[62]
Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, Dasari RR, Feld MS. Single molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Lett 1997;78:1667–70.Google Scholar
[63]
Kneipp K, Kneipp H, Itzkan I, Dasari RR, Feld MS. Single molecule detection using near infrared surface-enhanced Raman scattering. Springer Ser Chem Phys 2001;67:144–60.Google Scholar
[64]
Barhoumi A, Halas NJ. Label-free detection of dna hybridization using surface enhanced Raman spectroscopy. J Am Chem Soc 2010;132:12792–3.Google Scholar
[65]
Papadopoulou E, Bell SEJ. Structure of adenine on metal nanoparticles: pH equilibria and formation of Ag+ complexes detected by surface-enhanced Raman spectroscopy. J Phys Chem C 2010;114:22644–51.Google Scholar
[66]
Feng F, Zhi G, Jia HS, Cheng L, Tian YT, Li XJ. SERS detection of low-concentration adenine by a patterned silver structure immersion plated on a silicon nanoporous pillar array. Nanotechnology 2009;20: Article no. 295501, 6 pages.Google Scholar
[67]
Kundu J, Neumann O, Janesko BG, Zhang D, Lal S, Barhoumi A, Scuseria G, Halas NJ. Adenine- and Adenosine Monophosphate (AMP)-gold binding interactions studied by surface-enhanced Raman and infrared spectroscopies. J Phys Chem C 2009;113:14390–7.Google Scholar
[68]
Carrillo-Carrion C, Armenta S, Simonet BM, Valcarcel M, Lendl B. Determination of pyrimidine and purine bases by reversed-phase capillary liquid chromatography with at-line surface-enhanced raman spectroscopic detection employing a novel sers substrate based on zns/cdse silver-quantum dots. Anal Chem 2011;83:9391–8.Google Scholar
[69]
Primera-Pedrozo OM, Rodriguez GDM, Castellanos J, Felix-Rivera H, Resto O, Hernández-Rivera SP. Increasing surface enhanced Raman spectroscopy effect of RNA and DNA components by changing the pH of silver colloidal suspensions. SpectrochimActa A 2012;87:77–85.Google Scholar
[70]
Papadopoulou E, Bell SEJ. Surface-enhanced Raman evidence of protonation, reorientation, and Ag+ complexation of Deoxyadenosine and Deoxyadenosine-5 ′-Monophosphate (dAMP) on Ag and Au surfaces. J Phys Chem C 2011;115:14228–35.Google Scholar
[71]
Muntean CM, Leopold N, Halmagyi A, Valimareanu S. Surface-enhanced Raman spectroscopy of DNA from leaves of in vitro grown apple plants. J Raman Spectros 2011;42:844–50.Google Scholar
[72]
Barhoumi A, Zhang D, Halas NJ. Correlation of molecular orientation and packing density in a dsDNA self-assembled monolayer observable with surface-enhanced-Raman spectroscopy. J Am Chem Soc 2008;130:14040–1.Google Scholar
[73]
Rusciano G, De Luca AC, Pesce G, Sasso A, Oliviero G, Amato J, Borbone N, D′Errico S, Piccialli V, Piccialli G, Mayol L. Label-free probing of G-quadruplex formation by surface-enhanced Raman scattering. Anal Chem 2011;83:6849–55.Google Scholar
[74]
Muniz-Miranda M, Gellini C, Pagliai M, Innocenti M, Salvi PR, Schettino V. SERS and computational studies on MicroRNA chains adsorbed on silver surfaces. J Phys Chem C 2010;114:13730–5.Google Scholar
[75]
Percot A, Lecomte S, Vergne J, Maurel M-C. Hairpin ribozyme catalysis: a surface-enhanced Raman spectroscopy study. Biopolymers 2009;91:384–90.Google Scholar
[76]
Miljanic S, Dijanosic A, Piantanida I, Meic Z, Albelda MT, Sornosa-Ten A, García-Espana E. Surface-enhanced Raman study of the interactions between tripodal cationic polyamines and polynucleotides. Analyst 2011;136:3185–93.Google Scholar
[77]
Luo XL, Buckhout-White S, Bentley WE, Rubloff GW. Biofabrication of chitosan-silver composite SERS substrates enabling quantification of adenine by a spectroscopic shift. Biofabrication 2011;3: Article no. 034108, 9 pages.Google Scholar
[78]
Yin P-G, Jiang L, Lang X-F, Guo L, Yang S. Quantitative analysis of mononucleotides by isotopic labeling surface-enhanced Raman scattering spectroscopy. Biosens Bioelectron 2011;26:4828–31.Google Scholar
[79]
Chen J-W, Liu X-P, Feng K-J, Liang Y, Jiang JH, Shen GL, Yu RQ. Detection of adenosine using surface-enhanced Raman scattering based on structure-switching signaling aptamer. Biosens Bioelectron 2008;24:66–71.Google Scholar
[80]
Kim NH, Lee SJ, Moskovits M. Aptamer-mediated surface-enhanced Raman spectroscopy intensity amplification. Nano Letters 2010;10:4181–5.Google Scholar
[81]
Li M, Zhang J, Suri S, Sooter LJ, Ma D, Wu N. Detection of adenosine triphosphate with an aptamer biosensor based on surface-enhanced Raman scattering. Anal Chem 2012;84:2837–42.Google Scholar
[82]
Ye S, Xiao J, Guo Y, Zhang S. Aptamer-based SERS assay of ATP and lysozyme by using primer self-generation. Chemistry (Weinheim an der Bergstrasse, Germany) 2013;19:8111–6.Google Scholar
[83]
Li M, Zhang J, Suri S, Sooter LJ, Ma D, Wu N. Quantitative label-free RNA detection using surface-enhanced Raman spectroscopy. Chem Commun 2011;47:7425–7.Google Scholar
[84]
Rao S, Raj S, Balint S, Bardina Fons C, Campoy S, Llagostera M, Petrov D. Single DNA molecule detection in an optical trap using surface-enhanced Raman scattering. Appl Phys Lett 2010;96:213701.Google Scholar
[85]
Liu R, Zhu S, Si M, Liu Z, Zhang D. Surface-enhanced Raman scattering-based approach for DNA detection at low concentrations via polyvinyl alcohol-protected silver grasslike patterns. J Raman Spectros 2012;43:370–9.Google Scholar
[86]
Yuan W, Ho HP, Lee RKY, Kong SK. Surface-enhanced Raman scattering biosensor for DNA detection on nanoparticle island substrates. Appl Optics 2009;48:4329–37.Google Scholar
[87]
Fang C, Agarwal A, Buddharaju KD. Khalid NM, Salim SM, Widjaja E, Garland MV, Balasubramanian N, Kwong DL. DNA detection using nanostructured SERS substrates with Rhodamine B as Raman label. Biosens Bioelectron 2008;24:216–21.Google Scholar
[88]
Strelau KK, Kretschmer R, Moller R, Fritzsche W, Popp J. SERS as tool for the analysis of DNA-chips in a microfluidic platform. Anal Bioanal Chem 2010;396:1381–4.Google Scholar
[89]
Papadopoulou E, Bell SEJ. Label-free detection of single-base mismatches in DNA by surface-enhanced Raman spectroscopy. Angew Chem-Int Edit 2011;50:9058–61.Google Scholar
[90]
Li J-M, Ma W-F, You L-J, Guo J, Hu J, Wang CC. Highly sensitive detection of target ssDNA based on SERS liquid chip using suspended magnetic nanospheres as capturing substrates. Langmuir 2013;29:6147–55.Google Scholar
[91]
Zhang Z, Wen Y, Ma Y, Luo J, Jiang L, Song Y. Mixed DNA-functionalized nanoparticle probes for surface-enhanced Raman scattering-based multiplex DNA detection. Chem Commun 2011;47:7407–9.Google Scholar
[92]
Thompson DG, Faulds K, Smith WE, Graham D. Precise control of the assembly of dye-coded oligonucleotide silver nanoparticle conjugates with single base mismatch discrimination using surface enhanced resonance Raman scattering. J Phys Chem C 2010;114:7384–9.Google Scholar
[93]
Thuy NTB, Yokogawa R, Yoshimura Y, Fujimoto K, Koyano M, Maenosono S. Surface-enhanced Raman spectroscopy for facile DNA detection using gold nanoparticle aggregates formed via photoligation. Analyst 2010;135:595–602.Google Scholar
[94]
He Y, Su S, Xu T, Zhong Y, Zapien JA, Li J, Fan C, Lee S.-T. Silicon nanowires-based highly-efficient SERS-active platform for ultrasensitive DNA detection. Nano Today 2011;6:122–30.Google Scholar
[95]
Sun Y-H, Kong R-M, Lu D-Q, Zhang X-B, Meng HM, Tan M, Shen GL, Yu RQ. A nanoscale DNA-Au dendrimer as a signal amplifier for the universal design of functional DNA-based SERS biosensors. Chem Commun 2011;47:3840–2.Google Scholar
[96]
Panikkanvalappil SR, Mackey MA, El-Sayed MA. Probing the unique dehydration-induced structural modifications in cancer cell dna using surface enhanced raman spectroscopy. J Am Chem Soc 2013;135:4815–21.Google Scholar
[97]
Hu J, Zhang C-y. Sensitive detection of nucleic acids with rolling circle amplification and surface-enhanced raman scattering spectroscopy. Anal Chem 2010;82:8991–7.Google Scholar
[98]
Ye S, Yang Y, Xiao J, Zhang S. Surface-enhanced Raman scattering assay combined with autonomous DNA machine for detection of specific DNA and cancer cells. Chem Commun 2012;48:8535–7.Google Scholar
[99]
Yan J, Su S, He S, He Y, Zhao B, Wang D, Zhang H, Huang Q, Song S, Fan C. Nano rolling-circle amplification for enhanced SERS hot spots in protein microarray analysis. Anal Chem 2012;84:9139–45.Google Scholar
[100]
Hering KK, Moller R, Fritzsche W, Popp J. Microarray-based detection of dye-labeled DNA by SERRS using particles formed by enzymatic silver deposition. ChemPhysChem 2008;9:867–72.Google Scholar
[101]
Diaz Fleming G, Finnerty JJ, Campos-Vallette M, Celis F, Aliaga AE, Fredes C, Koch R. Experimental and theoretical Raman and surface-enhanced Raman scattering study of cysteine. J Raman Spectros 2009;40:632–8.Google Scholar
[102]
Chuang C-H, Chen Y-T. Raman scattering of L-tryptophan enhanced by surface plasmon of silver nanoparticles: vibrational assignment and structural determination. J Raman Spectros 2009;40:150–6.Google Scholar
[103]
Aliaga AE, Osorio-Roman I, Leyton P, Garrido C, Carcamo J, Caniulef C, Celis F, Diaz F, Clavijo E, Gomez-Jeria JS, Campos-Vallete MM. Surface-enhanced Raman scattering study of L-tryptophan. J Raman Spectros 2009;40:164–9.Google Scholar
[104]
Aliaga AE, Osorio-Roman I, Garrido C, Leyton P, Cárcamo J, Clavijo E, Gómez-Jeria JS, Díaz F, Campos-Vallette MM. Surface enhanced Raman scattering study of L-lysine. Vib Spectros 2009;50:131–5.Google Scholar
[105]
Aliaga AE, Garrido C, Leyton P, Diaz FG, Gomez-Jeria JS, Aguayo T, Clavijo E, Campos-Vallette MM, Sanchez-Cortes S. SERS and theoretical studies of arginine. Spectrochim Acta A 2010;76:458–63.Google Scholar
[106]
Yang H, Zhu X, Song W, Sun Y, Duan G, Zhao X, Zhang Z. N-acetylalanine monolayers at the silver surface investigated by surface enhanced Raman scattering spectroscopy and X-ray photoelectron spectroscopy: effect of metallic ions. J Phys Chem C 2008;112:15022–7.Google Scholar
[107]
Sheng C, Zhao H, Gu F, Yang H. Effect of Pb2+ on L-glutathione monolayers on a silver surface investigated by surface-enhanced Raman scattering spectroscopy. J Raman Spectros 2009;40:1274–8.Google Scholar
[108]
Graff M, Bukowska J. Surface-enhanced Raman scattering (SERS) spectroscopy of enantiomeric and racemic methionine on a silver electrode-evidence for chiral discrimination in interactions between adsorbed molecules. Chem Phys Lett 2011;509:58–61.Google Scholar
[109]
Graff M, Bukowska J. Enantiomeric recognition of phenylalanine by self-assembled monolayers of cysteine: Surface enhanced Raman scattering evidence. Vib Spectros 2010;52:103–7.Google Scholar
[110]
Thomas S, Biswas N, Malkar VV, Mukherjee T, Kapoor S. Studies on adsorption of carnosine on silver nanoparticles by SERS. Chem Phys Lett 2010;491:59–64.Google Scholar
[111]
Podstawka E, Andrzejak M, Kafarski P, Proniewicz LM. Comparison of adsorption mechanism on colloidal silver surface of alafosfalin and its analogs. J Raman Spectros 2008;39:1238–49.Google Scholar
[112]
Podstawka E, Kafarski P, Proniewicz LM. Effect of an aliphatic spacer group on the adsorption mechanism of phosphonodipeptides containing N-terminal glycine on the colloidal silver surface. J Raman Spectros 2008;39:1396–407.Google Scholar
[113]
Malek K, Makowski M, Krolikowska A, Bukowska J. Comparative studies on IR, Raman, and surface enhanced Raman scattering spectroscopy of dipeptides containing Delta Ala and Delta Phe. J Phys Chem B 2012;116:1414–25.Google Scholar
[114]
Yuan X, Gu H, Wu J. Surface-enhanced Raman spectrum of Gly-Gly adsorbed on the silver colloidal surface. J Mol Struct 2010;977:56–61.Google Scholar
[115]
Wei F, Zhang D, Halas NJ, Hartgerink JD. Aromatic amino acids providing characteristic motifs in the Raman and SERS spectroscopy of peptides. J Phys Chem B 2008;112:9158–64.Google Scholar
[116]
Podstawka E, Kafarski P, Proniewicz LM. Structural properties of L-X-L-Met-L-Ala phosphonate tripeptides: a combined FT-IR, FT-RS, and SERS spectroscopy studies and DFT calculations. J Phys Chem A 2008;112:11744–55.Google Scholar
[117]
Podstawka E. Effect of amino acid modifications on the molecular structure of adsorbed and nonadsorbed bombesin 6-14 fragments on an electrochemically roughened silver surface. J Raman Spectros 2008;39:1290–1305.Google Scholar
[118]
Podstawka E, Niaura G, Proniewicz LM. Potential-dependent studies on the interaction between phenylalanine-substituted bombesin fragments and roughened Ag, Au, and Cu electrode surfaces. J Phys Chem B 2010;114:1010–29.Google Scholar
[119]
Podstawka E, Ozaki Y, Proniewicz LM. Structures and bonding on a colloidal silver surface of the various length carboxyl terminal fragments of bombesin. Langmuir 2008;24:10807–16.Google Scholar
[120]
Podstawka-Proniewicz E, Ozaki Y, Kim Y, Xu Y, Proniewicz LM. Surface-enhanced Raman scattering studies on bombesin, its selected fragments and related peptides adsorbed at the silver colloidal surface. Appl Surf Sci 2011;257:8246–52.Google Scholar
[121]
Podstawka E, Proniewicz LM. The orientation of BN-related peptides adsorbed on SERS-active silver nanoparticles: comparison with a silver electrode surface. J Phys Chem B 2009;113:4978–85.Google Scholar
[122]
Podstawka-Proniewicz E, Kudelski A, Kim Y, Proniewicz LM. Structure and binding of specifically mutated neurotensin fragments on a silver substrate: vibrational studies. J Phys Chem B 2011;115:7097–108.Google Scholar
[123]
Podstawka-Proniewicz E, Ignatjev I, Niaura G, Proniewicz LM. Phe-MetNH(2) terminal bombesin subfamily peptides: potential induced changes in adsorption on Ag, Au, and Cu electrodes monitored by SERS. J Phys Chem C 2012;116:4189–200.Google Scholar
[124]
Ignatjev I, Podstawka-Proniewicz E, Niaura G, Lombardi JR, Proniewicz LM. Potential induced changes in neuromedin B adsorption on Ag, Au, and Cu electrodes monitored by surface-enhanced Raman scattering. J Phys Chem B 2011;115:10525–36.Google Scholar
[125]
Aliaga AE, Aguayo T, Garrido C, Clavijo E, Hevia E, Gómez-Jeria JS, Leyton P, Campos-Vallette MM, Sanchez-Cortes S. Surface-enhanced Raman scattering and theoretical studies of the C-terminal peptide of the beta-subunit human chorionic gonadotropin without linked carbohydrates. Biopolymers 2011;95:135–43.Google Scholar
[126]
Garrido C, Aliaga AE, Gomez-Jeria JS, Clavijo RE, Campos-Vallette MM, Sanchez-Cortes S. Adsorption of oligopeptides on silver nanoparticles: surface-enhanced Raman scattering and theoretical studies. J Raman Spectros 2010;41:1149–55.Google Scholar
[127]
Aliaga AE, Ahumada H, Sepulveda K, Gomez-Jeria JS, Garrido C, Weiss-Lopez BE, Campos-Vallette MM. SERS, molecular dynamics and molecular orbital studies of the MRKDV peptide on silver and membrane surfaces. J Phys Chem C 2011;115:3982–9.Google Scholar
[128]
Podstawka-Proniewicz E, Kosior M, Kim Y, Rolka K, Proniewicz LM. Nociceptin and Its natural and specifically-modified fragments: structural studies. Biopolymers 2010;93:1039–54.Google Scholar
[129]
Iosin M, Toderas F, Baldeck PL, Astilean S. Study of protein-gold nanoparticle conjugates by fluorescence and surface-enhanced Raman scattering. J Mole Struct 2009;924–26:196–200.Google Scholar
[130]
Das R, Jagannathan R, Sharan C, Kumar U, Poddar P. Mechanistic study of surface functionalization of enzyme lysozyme synthesized Ag and Au nanoparticles using surface enhanced Raman spectroscopy. J Phys Chem C 2009;113:21493–500.Google Scholar
[131]
Chandra G, Ghosh KS, Dasgupta S, Roy A. Evidence of conformational changes in adsorbed lysozyme molecule on silver colloids. Int J Biol Macromol 2010;47:361–5.Google Scholar
[132]
Sengupta A, Thai CK, Sastry MSR, Matthaei JF, Schwartz DT, Davis EJ, Baneyx F. A genetic approach for controlling the binding and orientation of proteins on nanoparticles. Langmuir 2008;24:2000–8.Google Scholar
[133]
Kumar GVP, Selvi R, Kishore AH, KunduTK, Narayana C. Surface-enhanced Raman, spectroscopic studies of coactivator-associated arginine methyltransferase 1. J Phys Chem B 2008;112:6703–7.Google Scholar
[134]
Kudelski A. In situ SERS studies on the adsorption of tyrosinase on bare and alkanethiol-modified silver substrates. Vib Spectros 2008;46:34–8.Google Scholar
[135]
Li D, Li D-W, Fossey JS, Long Y-T. In situ surface-enhanced Raman scattering and X-ray photoelectron spectroscopic investigation of coenzyme Q(10) on silver electrode. Phys Chem Chem Phys 2011;13:2259–65.Google Scholar
[136]
Kaminska A, Forster RJ, Keyes TE. The impact of adsorption of bovine pancreatic trypsin inhibitor on CTAB-protected gold nanoparticle arrays: a Raman spectroscopic comparison with solution denaturation. J Raman Spectros 2010;41:130–5.Google Scholar
[137]
Krolikowska A, Bukowska J. Surface-enhanced resonance Raman spectroscopic characterization of cytochrome c immobilized on 2-mercaptoethanesulfonate monolayers on silver. J Raman Spectros 2010;41:1621–31.Google Scholar
[138]
Papazoglou ES, Babu S, Hansberry DR, Mohapatra S, Patel C. SERS study on myeloperoxidase and its immunocomplex: Identification of binding interactions. Spectros Int J 2010;24:183–90.Google Scholar
[139]
Choi I, Huh YS, Erickson D. Ultra-sensitive, label-free probing of the conformational characteristics of amyloid beta aggregates with a SERS active nanofluidic device. Microfluidics and Nanofluidics 2012;12:663–9.Google Scholar
[140]
Abdali S, De Laere B, Poulsen M, Grigorian M, Lukanidin E, Klingelhöfer J. Toward methodology for detection of cancer-promoting S100A4 protein conformations in subnanomolar concentrations using Raman and SERS. J Phys Chem C 2010;114:7274–9.Google Scholar
[141]
Singhal K, Kalkan AK. Surface-enhanced raman scattering captures conformational changes of single photoactive yellow protein molecules under photoexcitation. J Am Chem Soc 2010;132:429–31.Google Scholar
[142]
Mueller J, Becher T, Braunstein J, Berdel P, Gravius S, Rohrbach F, Oldenburg J, Mayer G, Pötzsch B. Profiling of active thrombin in human blood by supramolecular complexes. Angew Chem-Int Edit 2011;50:6075–8.Google Scholar
[143]
Nierodzik ML, Karpatkin S. Thrombin induces tumor growth, metastasis, and angiogenesis: Evidence for a thrombin-regulated dormant tumor phenotype. Cancer Cell 2006;10:355–62.Google Scholar
[144]
Song K-M, Lee S, Ban C. Aptamers and their biological applications. Sensors 2012;12:612–31.Google Scholar
[145]
Wu Z, Liu Y, Zhou X, Shen A, Hu J. A "turn-off′ SERS-based detection platform for ultrasensitive detection of thrombin based on, enzymatic assays. Biosens Bioelectron 2013;44:10–15.Google Scholar
[146]
Ochsenkuehn MA, Campbell CJ. Probing biomolecular interactions using surface enhanced Raman spectroscopy: label-free protein detection using a G-quadruplex DNA aptamer. Chem Commun 2010;46:2799–801.Google Scholar
[147]
Pagba CV, Lane SM, Cho H, Wachsmann-Hogiu S. Direct detection of aptamer-thrombin binding via surface-enhanced Raman spectroscopy. J Biomed Optics 2010;15.Google Scholar
[148]
Fabris L, Dante M, Nguyen TQ, Tok JBH, Bazan GC. SERS aptatags: New responsive metallic nanostructures for heterogeneous protein detection by surface enhanced Raman spectroscopy. Adv Funct Mater 2008;18:2518–25.Google Scholar
[149]
Hu J, Zheng P-C, Jiang J-H, Shen G-L, Yu RQ, Liu GK. Electrostatic interaction based approach to thrombin detection by surface-enhanced Raman spectroscopy. Anal Chem 2009;81:87–93.Google Scholar
[150]
Wang YL, Lee K, Irudayaraj J. SERS aptasensor from nanorod-nanoparticle junction for protein detection. Chem Commun 2010;46:613–5.Google Scholar
[151]
Yoon J, Choi N, Ko J, Kim K, Lee S, Choo J. Highly sensitive detection of thrombin using SERS-based magnetic aptasensors. Biosens Bioelectron 2013;47:62–7.Google Scholar
[152]
Kennedy DC, Hoop KA, Tay L-L, Pezacki JP. Development of nanoparticle probes for multiplex SERS imaging of cell surface proteins. Nanoscale 2010;2:1413–6.Google Scholar
[153]
Woo MA, Lee S-M, Kim G, Baek J, Noh MS, Kim JE, Park SJ, Minai-Tehrani A, Park SC, Seo YT, Kim YK, Lee YS, Jeong DH, Cho MH. Multiplex immunoassay using fluorescent-surface enhanced Raman spectroscopic dots for the detection of bronchioalveolar stem Cells in murine lung. Anal Chem 2009;81:1008–15.Google Scholar
[154]
Hodges MD, Kelly JG, Bentley AJ, Fogarty S, Patel II, Martin FL, Fullwood NJ. Combining immunolabeling and surface-enhanced Raman spectroscopy on cell membranes. ACS Nano 2011;5:9535–41.Google Scholar
[155]
Sujith A, Itoh T, Abe H, Yoshida K-i, Kiran MS, Biju V, Ishikawa M. Imaging the cell wall of living single yeast cells using surface-enhanced Raman spectroscopy. Anal Bioanal Chem 2009;394:1803–9.Google Scholar
[156]
Hollywood KA, Shadi IT, Goodacre R. Monitoring the succinate dehydrogenase activity isolated from mitochondria by surface enhanced Raman scattering. J Phys Chem C 2010;114: 7308–13.Google Scholar
[157]
Yazgan NN, Boyaci IH, Temur E, Tamer U, Topcu A. A high sensitive assay platform based on surface-enhanced Raman scattering for quantification of protease activity. Talanta 2010;82:631–9.Google Scholar
[158]
Li T, Liu D, Wang Z. Microarray-based Raman spectroscopic assay for kinase inhibition by gold nanoparticle probes. Biosens Bioelectron 2009;24:3335–9.Google Scholar
[159]
Stevenson R, Stokes RJ, MacMillan D, Armstrong D, Faulds K, Wadsworth R, Kunuthur S, Suckling CJ, Graham D. In situ detection of pterins by SERS. Analyst 2009;134:1561–4.Google Scholar
[160]
He P, Zhang Y, Liu L, Qiao W, Zhang S. Ultrasensitive SERS detection of lysozyme by a target-triggering multiple cycle amplification strategy based on a gold substrate. Chemistry (Weinheim an der Bergstrasse, Germany) 2013;19:7452–60.Google Scholar
[161]
Joshi B, Chakrabarty A, Bruot C, Ainsworth H, Fraizer G, Wei QH. DNA-WT1 protein interaction studied by surface-enhanced Raman spectroscopy. Anal Bioanal Chem 2010;396:1415–21.Google Scholar
[162]
Han XX, Kitahama Y, Tanaka Y, Guo J, Xu WQ, Zhao B, Ozaki Y. Simplified protocol for detection of protein-ligand interactions via surface-enhanced resonance Raman scattering and surface-enhanced fluorescence. Anal Chem 2008;80:6567–72.Google Scholar
[163]
Chen L, Hong W, Guo Z, Sa Y, Wang X, Jung YM, Zhao B. Magnetic assistance highly sensitive protein assay based on surface-enhanced resonance Raman scattering. J Colloid Interf Sci 2012;368:282–6.Google Scholar
[164]
Levin CS, Kundu J, Janesko BG, Scuseria GE, Raphael RM, Halas NJ. Interactions of Ibuprofen with hybrid lipid bilayers probed by complementary surface-enhanced vibrational spectroscopies. J Phys Chem B 2008;112:14168–75.Google Scholar
[165]
Lajos G, Jancura D, Miskovsky P, Garcia-Ramos JV, Sanchez-Cortes S. Interaction of the photosensitizer hypericin with low-density lipoproteins and phosphatidylcholine: a surface-enhanced raman scattering and surface-enhanced fluorescence study. J Phys Chem C 2009;113:7147–54.Google Scholar
[166]
Premasiri WR, Sauer-Budge AF, Lee JC, Klapperich CM, Ziegler LD. Rapid bacterial diagnostics via surface-enhanced Raman microscopy. Spectroscopy - Special Issues 2012;27:s8–s21.Google Scholar
[167]
O’Brien JM, Jr, Ali NA, Aberegg SK, Abraham E. Sepsis. Am J Med 2007;120:1012–22.Google Scholar
[168]
Brumbaugh AR, Mobley HLT. Preventing urinary tract infection: progress toward an effective Escherichia coli vaccine. Expert Rev Vaccines 2012;11:663–76.Google Scholar
[169]
Wertheim H, Verbrugh HA, van Pelt C, de Man P, van Belkum A, Vos MC. Improved detection of methicillin-resistant Staphylococcus aureus using phenyl mannitol broth containing aztreonam and ceftizoxime. J Clin Microbiol 2001;39:2660–2.Google Scholar
[170]
Dougan JA, MacRae D, Graham D, Faulds K. DNA detection using enzymatic signal production and SERS. Chem Commun 2011;47:4649–51.Google Scholar
[171]
Kujau MJ, Wolfl S. Efficient preparation of single-stranded DNA for in vitro selection. Mole Biotechnol 1997;7:333–5.Google Scholar
[172]
Graham D, Stevenson R, Thompson DG, Barrett L, Dalton C, Faulds K. Combining functionalised nanoparticles and SERS for the detection of DNA relating to disease. Faraday Discuss 2011;149:291–9.Google Scholar
[173]
Faulds K, Jarvis R, Smith WE, Graham D, Goodacre R. Multiplexed detection of six labelled oligonucleotides using surface enhanced resonance Raman scattering (SERRS). Analyst 2008;133:1505–12.Google Scholar
[174]
Papadopoulou E, Bell SEJ. Label-Free detection of nanomolar unmodified single- and double-stranded DNA by using surface-enhanced Raman spectroscopy on Ag and Au colloids. Chem Eur J 2012;18:5394–400.Google Scholar
[175]
Kang T, Yoo SM, Yoon I, Lee SY, Kim B. Patterned multiplex pathogen DNA detection by Au particle-on-wire SERS sensor. Nano Letters 2010;10:1189–93.Google Scholar
[176]
MacAskill A, Crawford D, Graham D, Faulds K. DNA sequence detection using surface-enhanced resonance Raman spectroscopy in a homogeneous multiplexed assay. Anal Chem 2009;81:8134–40.Google Scholar
[177]
van Lierop D, Faulds K, Graham D. Separation free DNA detection using surface enhanced Raman scattering. Anal Chem 2011;83:5817–21.Google Scholar
[178]
van Lierop D, Larmour IA, Faulds K, Graham D. SERS primers and their mode of action for pathogen DNA detection. Anal Chem 2013;85:1408–14.Google Scholar
[179]
Harper MM, Robertson B, Ricketts A, Faulds K. Specific detection of DNA through coupling of a TaqMan assay with surface enhanced Raman scattering (SERS). Chem Commun 2012;48:9412–14.Google Scholar
[180]
Strelau KK, Brinker A, Schnee C, Weber K, Möller R, Popp J. Detection of PCR products amplified from DNA of epizootic pathogens using magnetic nanoparticles and SERS. J Raman Spectros 2011;42:243–50.Google Scholar
[181]
Osorio-Roman IO, Aroca RF, Astudillo J, Matsuhiro B, Vásquez C, Pérez JM. Characterization of bacteria using its O-antigen with surface-enhanced Raman scattering. Analyst 2010;135:1997–2001.Google Scholar
[182]
Yang X, Gu C, Qian F, Li Y, Zhang JZ. Highly sensitive detection of proteins and bacteria in aqueous solution using surface-enhanced Raman scattering and optical fibers. Anal Chem 2011;83:5888–94.Google Scholar
[183]
Arruebo M, Valladares M, Gonzalez-Fernandez A. Antibody-conjugated nanoparticles for biomedical applications. J Nanomaterials 2009;2009: Article ID 439389, 24 pages (doi: 10.1155/2009/439389).Google Scholar
[184]
Ravindranath SP, Wang Y, Irudayaraj J. SERS driven cross-platform based multiplex pathogen detection. Sensor Actuat B-Chem 2011;152:183–90.Google Scholar
[185]
Lin C-C, Yang Y-M, Chen Y-F, Yang T-S, Chang H-C. A new protein A assay based on Raman reporter labeled immunogold nanoparticles. Biosens Bioelectron 2008;24:178–83.Google Scholar
[186]
Yakes BJ, Lipert RJ, Bannantine JP, Porter MD. Detection of Mycobacterium avium subsp paratuberculosis by a sonicate immunoassay based on surface-enhanced Raman scattering. Clin Vaccine Immunol 2008;15:227–34.Google Scholar
[187]
Colpitts TM, Conway MJ, Montgomery RR, Fikrig E. West nile virus: biology, transmission, and human infection. Clin microbiol rev 2012;25:635–48.Google Scholar
[188]
Zhang H, Harpster MH, Park HJ, Johnson PA. Surface-enhanced Raman scattering detection of DNA derived from the west nile virus genome using magnetic capture of Raman-active gold nanoparticles. Anal Chem 2011;83:254–60.Google Scholar
[189]
Zhang H, Harpster MH, Wilson WC, Johnson PA. Surface-enhanced Raman scattering detection of DNAs derived from virus genomes using Au-coated paramagnetic nanoparticles. Langmuir 2012;28:4030–7.Google Scholar
[190]
Neng J, Harpster MH, Wilson WC, Johnson PA. Surface-enhanced Raman scattering (SERS) detection of multiple viral antigens using magnetic capture of SERS-active nanoparticles. Biosens Bioelectron 2013;41:316–21.Google Scholar
[191]
Tsongalis GJ. Branched DNA technology in molecular diagnostics. Am J Clin Pathol 2006;126:448–53.Google Scholar
[192]
Hu J, Zheng P-C, Jiang J-H, Shen G-L, Yu RQ, Liu GK. Sub-attomolar HIV-1 DNA detection using surface-enhanced Raman spectroscopy. Analyst 2010;135:1084–9.Google Scholar
[193]
Huh YS, Chung AJ, Cordovez B, Erickson D. Enhanced on-chip SERS based biomolecular detection using electrokinetically active microwells. Lab on a Chip 2009;9:433–9.Google Scholar
[194]
Tang KF, Ooi EE. Diagnosis of dengue: an update. Expert Rev Anti-Infective Therapy 2012;10:895–907.Google Scholar
[195]
Kumar S, Henrickson KJ. Update on influenza diagnostics: lessons from the novel H1N1 Influenza a pandemic. Clin microbiol rev 2012;25:344–61.Google Scholar
[196]
Seol M-L, Choi S-J, Baek DJ, Park TJ, Ahn J-H, Lee SY, Choi YK. A nanoforest structure for practical surface-enhanced Raman scattering substrates. Nanotechnology 2012;23: Article no. 095301, 7 pages.Google Scholar
[197]
Negri P, Kage A, Nitsche A, Naumann D, Dluhy RA. Detection of viral nucleoprotein binding to anti-influenza aptamers via SERS. Chem Commun 2011;47:8635–7.Google Scholar
[198]
Marotta NE, Beavers KR, Bottomley LA. Limitations of surface enhanced Raman scattering in sensing DNA hybridization demonstrated by label-free DNA oligos as molecular rulers of distance-dependent enhancement. Anal Chem 2013;85:1440–6.Google Scholar
[199]
Chang J. Current progress on development of respiratory syncytial virus vaccine. Bmb Reports 2011;44:232–7.Google Scholar
[200]
Chen Y, Zheng X, Chen G, He C, Zhu W, Feng S, Xi G, Chen R, Lan F, Zeng H. Immunoassay for LMP1 in nasopharyngeal tissue based on surface-enhanced Raman scattering. Int J Nanomed 2012;7:73–82.Google Scholar
[201]
Lin J, Chen R, Feng S, Pan J, Li B, Chen G, Lin S, Li C, Sun L, Huang Z, Zeng H. Surface-enhanced Raman scattering spectroscopy for potential noninvasive nasopharyngeal cancer detection. J Raman Spectros 2012;43:497–502.Google Scholar
[202]
Lin J, Chen R, Feng S, Pan J, Li Y, Chen G, Cheng M, Huang Z, Yu Y, Zeng H. A novel blood plasma analysis technique combining membrane electrophoresis with silver nanoparticle-based SERS spectroscopy for potential applications in noninvasive cancer detection. Nanomed-Nanotechnol Biol Med 2011;7:655–63.Google Scholar
[203]
Feng SY, Chen R, Lin JQ, Pan JJ, Wu Y, Li Y, Chen J, Zeng H. Gastric cancer detection based on blood plasma surface-enhanced Raman spectroscopy excited by polarized laser light. Biosens Bioelectron 2011;26:3167–74.Google Scholar
[204]
Pinzani P, Salvianti F, Pazzagli M, Orlando C. Circulating nucleic acids in cancer and pregnancy. Methods 2010;50:302–7.Google Scholar
[205]
Li S-X, Zeng Q-Y, Li L-F, Zhang Y-J, Wan MM, Liu ZM, Xiong HL, Guo ZY, Liu SH. Study of support vector machine and serum surface-enhanced Raman spectroscopy for noninvasive esophageal cancer detection. J Biomed Opt 2013;18:027008.Google Scholar
[206]
Lin D, Feng S, Pan J, Chen Y, Lin J, Chen G, Xie S, Zeng H, Chen R. Colorectal cancer detection by gold nanoparticle based surface-enhanced Raman spectroscopy of blood serum and statistical analysis. Opt Express 2011;19:13565–77.Google Scholar
[207]
Feng S, Chen R, Lin J, Pan J, Chen G, Li Y, Cheng M, Huang Z, Chen J, Zeng H. Nasopharyngeal cancer detection based on blood plasma surface-enhanced Raman spectroscopy and multivariate analysis. Biosens Bioelectron 2010;25:2414–9.Google Scholar
[208]
Feng S, Lin D, Lin J, Li B, Huang Z, Chen G, Zhang W, Wang L, Pan J, Chen R, Zeng H. Blood plasma surface-enhanced Raman spectroscopy for non-invasive optical detection of cervical cancer. Analyst 2013;138:3967–74.Google Scholar
[209]
Gormally E, Caboux E, Vineis P, Hainaut P. Circulating free DNA in plasma or serum as biomarker of carcinogenesis: practical aspects and biological significance. Mutat Res-Rev Mutat 2007;635:105–117.Google Scholar
[210]
Chen Y, Chen G, Feng S, Pan J, Zheng X, Su Y, Chen Y, Huang Z, Lin X, Lan F, Chen R, Zeng H. Label-free serum ribonucleic acid analysis for colorectal cancer detection by surface-enhanced Raman spectroscopy and multivariate analysis. J Biomed Opt 2012;17:067003.Google Scholar
[211]
Arya SK, Lim B, Rahman ARA. Enrichment, detection and clinical significance of circulating tumor cells. Lab on a Chip 2013;13:1995–2027.Google Scholar
[212]
Wang X, Qian X, Beitler JJ, Chen ZG, Khuri FR, Lewis MM, Shin HJ, Nie S, Shin DM. Detection of circulating tumor cells in human peripheral blood using surface-enhanced Raman scattering nanoparticles. Cancer Res 2011;71: 1526–32.Google Scholar
[213]
Sha MY, Xu H, Natan MJ, Cromer R. Surface-enhanced Raman scattering tags for rapid and homogeneous detection of circulating tumor cells in the presence of human whole blood. J Am Chem Soc 2008;130:17214–5.Google Scholar
[214]
Lee K, Drachev VP, Irudayaraj J. DNA-Gold nanoparticle reversible networks grown on cell surface marker sites: application in diagnostics. Acs Nano 2011;5:2109–17.Google Scholar
[215]
MacLaughlin CM, Mullaithilaga N, Yang G, Ip SY, Wang C, Walker GC. Surface-enhanced Raman scattering dye-labeled Au nanoparticles for triplexed detection of leukemia and lymphoma cells and SERS flow cytometry. Langmuir 2013;29:1908–19.Google Scholar
[216]
Nguyen CT, Nguyen JT, Rutledge S, Zhang J, Wang C, Walker GC. Detection of chronic lymphocytic leukemia cell surface markers using surface enhanced Raman scattering gold nanoparticles. Cancer Lett 2010;292:91–7.Google Scholar
[217]
Dougherty U, Sehdev A, Cerda S, Mustafi R, Little N, Yuan W, Jagadeeswaran S, Chumsangsri A, Delgado J, Tretiakova M, Joseph L, Hart J, Cohen EE, Aluri L, Fichera A, Bissonnette M. Epidermal growth factor receptor controls flat dysplastic aberrant crypt foci development and colon cancer progression in the rat azoxymethane model. Clin Cancer Res 2008;14: 2253–62.Google Scholar
[218]
Qian X, Peng X-H, Ansari DO, Yin-Goen Q, Chen GZ, Shin DM, Yang L, Young AN, Wang MD, Nie S. In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat Biotechnol 2008;26, 83–90.Google Scholar
[219]
Jokerst JV, Miao Z, Zavaleta C, Cheng Z, Gambhir SS. Affibody-functionalized gold-silica nanoparticles for Raman molecular imaging of the epidermal growth factor receptor. Small 2011;7:625–33.Google Scholar
[220]
Dinish US, Fu CY, Soh KS, Bhuvaneswari R, Kumar A, Olivo M. Highly sensitive SERS detection of cancer proteins in low sample volume using hollow core photonic crystal fiber. Biosens Bioelectron 2012;33:293–8.Google Scholar
[221]
Maiti KK, Samanta A, Vendrell M, Soh K-S, Olivo M, Chang YT. Multiplex cancer cell detection by SERS nanotags with cyanine and triphenylmethine Raman reporters. Chem Commun 2011;47:3514–6.Google Scholar
[222]
Yang J, Wang Z, Zong S, Song C, Zhang R, Cui Y. Distinguishing breast cancer cells using surface-enhanced Raman scattering. Anal Bioanal Chem 2012;402:1093–100.Google Scholar
[223]
Lee S, Chon H, Lee M, Choo J, Shin SY, Lee YH, Rhyu IJ, Son SW, Oh CH. Surface-enhanced Raman scattering imaging of HER2 cancer markers overexpressed in single MCF7 cells using antibody conjugated hollow gold nanospheres. Biosens Bioelectron 2009;24:2260–3.Google Scholar
[224]
Park H, Lee S, Chen L, Lee EK, Shin SY, Lee YH, Son SW, Oh CH, Song JM, Kang SH, Choo J. SERS imaging of HER2-overexpressed MCF7 cells using antibody-conjugated gold nanorods. Phys Chem Chem Phys 2009;11:7444–9.Google Scholar
[225]
Wang HN, Vo-Dinh T. Multiplex detection of breast cancer biomarkers using plasmonic molecular sentinel nanoprobes. Nanotechnology 2009;20:065101.Google Scholar
[226]
Ferrara N. Vascular endothelial growth factor: basic science and clinical progress. Endocr Rev 2004;25:581–611.Google Scholar
[227]
Ko J, Lee S, Lee EK, Chang S-I, Chen L, Yoon SY, Choo J. SERS-based immunoassay of tumor marker VEGF using DNA aptamers and silica-encapsulated hollow gold nanospheres. Phys Chem Chem Phys 2013;15:5379–85.Google Scholar
[228]
Li M, Cushing SK, Zhang J, Suri S, Evans R, Petros WP, Gibson LF, Ma D, Liu Y, Wu N. Three-dimensional hierarchical plasmonic nano-architecture enhanced surface-enhanced Raman scattering immunosensor for cancer biomarker detection in blood plasma. ACS Nano 2013;7:4967–76.Google Scholar
[229]
Wu P, Gao Y, Zhang H, Cai C. Aptamer-guided silver-gold bimetallic nanostructures with highly active surface-enhanced Raman scattering for specific detection and near-infrared photothermal therapy of human breast cancer cells. Anal Chem 2012;84:7692–9.Google Scholar
[230]
Yu C, Hu Y, Duan J, Yuan W, Wang C, Xu H, Yang X.-D. Novel aptamer-nanoparticle bioconjugates enhances delivery of anticancer drug to MUC1-positive cancer cells in vitro. Plos One 2011;6:e24077.Google Scholar
[231]
Wang G, Lipert RJ, Jain M, Kaur S, Chakraboty S, Torres MP, Batra SK, Brand RE, Porter MD. Detection of the potential pancreatic cancer marker MUC4 in serum using surface-enhanced Raman scattering. Anal Chem 2011;83:2554–61.Google Scholar
[232]
Chon H, Lee S, Yoon S-Y, Chang S-I, Lim DW, Choo J. Simultaneous immunoassay for the detection of two lung cancer markers using functionalized SERS nanoprobes. Chem Commun 2011;47:12515–17.Google Scholar
[233]
Lee M, Lee S, Lee JH, Lim HW, Seong GH, Lee EK, Chang SI, Oh CH, Choo J. Highly reproducible immunoassay of cancer markers on a gold-patterned microarray chip using surface-enhanced Raman scattering imaging. Biosens Bioelectron 2011;26:2135–41.Google Scholar
[234]
Lee M, Lee K, Kim KH, Oh KW, Choo J. SERS-based immunoassay using a gold array-embedded gradient microfluidic chip. Lab on a Chip 2012;12:3720–7.Google Scholar
[235]
Srisa-Art M, Kang D-K, Hong J, Park H, Leatherbarrow RJ, Edel JB, Chang SI, deMello AJ. Analysis of protein-protein interactions by using droplet-based microfluidics. Chembiochem 2009;10:1605–11.Google Scholar
[236]
Lutz B, Dentinger C, Sun L, Nguyen L, Zhang J, Chmura A, Allen A, Chan S, Knudsen B. Raman nanoparticle probes for antibody-based protein detection in tissues. J Histochem Cytochem 2008;56:371–9.Google Scholar
[237]
Zhou X, Xu W, Wang Y, Kuang Q, Shi Y, Zhong L, Zhang Q. Fabrication of cluster/shell Fe3O4/Au nanoparticles and application in protein detection via a SERS method. J Phys Chem C 2010;114:19607–13.Google Scholar
[238]
Granger JH, Granger MC, Firpo MA, Mulvihill SJ, Porter MD. Toward development of a surface-enhanced Raman scattering (SERS)-based cancer diagnostic immunoassay panel. Analyst 2013;138:410–6.Google Scholar
[239]
Domenici F, Bizzarri AR, Cannistraro S. SERS-based nanobiosensing for ultrasensitive detection of the p53 tumor suppressor. Int J Nanomed 2011;6:2033–42.Google Scholar
[240]
Domenici F, Bizzarri AR, Cannistraro S. Surface-enhanced Raman scattering detection of wild-type and mutant p53 proteins at very low concentration in human serum. Anal Biochem 2012;421:9–15.Google Scholar
[241]
Toledo F, Wahl GM. Regulating the p53 pathway: in vitro hypotheses, in vivo veritas. Nat Rev Cancer 2006;6:909–23.Google Scholar
[242]
Wu M, Mao C, Chen Q, Cu X-W, Zhang W-S. Serum p53 protein and anti-p53 antibodies are associated with increased cancer risk: a case-control study of 569 patients and 879 healthy controls. Mol Biol Rep 2010;37:339–43.Google Scholar
[243]
Balogh GA, Mailo DA, Corte MM, Roncoroni P, Nardi H, Vincent E, Martinez D, Cafasso ME, Frizza A, Ponce G, Vincent E, Barutta E, Lizarraga P, Lizarraga G, Monti C, Paolillo E, Vincent R, Quatroquio R, Grimi C, Maturi H, Aimale M, Spinsanti C, Montero H, Santiago J, Shulman L, Rivadulla M, Machiavelli M, Salum G, Cuevas MA, Picolini J, Gentili A, Gentili R, Mordoh J. Mutant p53 protein in serum could be used as a molecular marker in human breast cancer. Int J Oncol 2006; 28:995–1002.Google Scholar
[244]
Wu L, Wang Z, Zong S, Chen H, Wang C, Xu S, Cui Y. Simultaneous evaluation of p53 and p21 expression level for early cancer diagnosis using SERS technique. The Analyst 2013;138:3450–6.Google Scholar
[245]
Schutz M, Steinigeweg D, Salehi M, Kompe K, Schlucker S. Hydrophilically stabilized gold nanostars as SERS labels for tissue imaging of the tumor suppressor p63 by immuno-SERS microscopy. Chem Commun 2011;47:4216–8.Google Scholar
[246]
Salehi M, Steinigeweg D, Ströbel P, Marx A, Packeisen J, Schlücker S. Rapid immuno-SERS microscopy for tissue imaging with single-nanoparticle sensitivity. J Biophotonics 2013, DOI: 10.1002/jbio.201200148.Google Scholar
[247]
Wang DG, Fan JB, Siao CJ, Berno A, Young P, Sapolsky R, Ghandour G, Perkins N, Winchester E, Spencer J, Kruglyak L, Stein L, Hsie L, Topaloglou T, Hubbell E, Robinson E, Mittmann M, Morris MS, Shen N, Kilburn D, Rioux J, Nusbaum C, Rozen S, Hudson TJ, Lipshutz R, Chee M, Lander ES. Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science 1998;280:1077–82.Google Scholar
[248]
Sachidanandam R, Weissman D, Schmidt SC, Kakol JM, Stein LD, Marth G, Sherry S, Mullikin JC, Mortimore BJ, Willey DL, Hunt SE, Cole CG, Coggill PC, Rice CM, Ning Z, Rogers J, Bentley DR, Kwok PY, Mardis ER, Yeh RT, Schultz B, Cook L, Davenport R, Dante M, Fulton L, Hillier L, Waterston RH, McPherson JD, Gilman B, Schaffner S, Van Etten WJ, Reich D, Higgins J, Daly MJ, Blumenstiel B, Baldwin J, Stange-Thomann N, Zody MC, Linton L, Lander ES, Altshuler D; International SNP Map Working Group. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature 2001;409:928–33.Google Scholar
[249]
Aouacheria A, Navratil V, Wen WY, Jiang M, Mouchiroud D, Gautier C, Gouy M, Zhang M. In silico whole-genome scanning of cancer-associated nonsynonymous SNPs and molecular characterization of a dynein light chain tumour variant. Oncogene 2005;24:6133–42.Google Scholar
[250]
Martini M, Vecchione L, Siena S, Tejpar S, Bardelli A. Targeted therapies: how personal should we go? Nature Rev Clin Oncology 2012;9:87–97.Google Scholar
[251]
Moody B, McCarty G. Statistically significant Raman detection of midsequence single nucleotide polymorphisms. Anal Chem 2009;81:2013–16.Google Scholar
[252]
Lowe AJ, Huh YS, Strickland AD, Erickson D, Batt CA. Multiplex single nucleotide polymorphism genotyping utilizing ligase detection reaction coupled surface enhanced Raman spectroscopy. Anal Chem 2010;82:5810–4.Google Scholar
[253]
Huh YS, Lowe AJ, Strickland AD, Batt CA, Erickson D. Surface-enhanced Raman scattering based ligase detection reaction. J Am Chem Soc 2009;131:2208–13.Google Scholar
[254]
Yoo SM, Kang T, Kim B, Lee SY. Detection of single nucleotide polymorphisms by a gold nanowire-on-film SERS sensor coupled with S1 nuclease treatment. Chem Eur J 2011;17: 8657–62.Google Scholar
[255]
Wabuyele MB, Yan F, Vo-Dinh T. Plasmonics nanoprobes: detection of single-nucleotide polymorphisms in the breast cancer BRCA1 gene. Anal Bioanal Chem 2010;398:729–36.Google Scholar
[256]
Okumura N, Yoshida H, Kitagishi Y, Nishimura Y, Matsuda S. Alternative splicings on p53, BRCA1 and PTEN genes involved in breast cancer. Biochem Biophys Res Commun 2011;413:395–9.Google Scholar
[257]
Choi N, Lee K, Lim DW, Lee EK, Chang SI, Oh KW, Choo J. Simultaneous detection of duplex DNA oligonucleotides using a SERS-based micro-network gradient chip. Lab on a Chip 2012;12:5160–7.Google Scholar
[258]
Sun L, Yu CX, Irudayaraj J. Raman multiplexers for alternative gene splicing. Anal Chem 2008;80:3342–9.Google Scholar
[259]
Sun L, Irudayaraj J. PCR-free quantification of multiple splice variants in a cancer gene by surface-enhanced Raman spectroscopy. J Phys Chem B 2009;113:14021–5.Google Scholar
[260]
Sun L, Irudayaraj J. Quantitative surface-Enhanced raman for gene expression estimation. Biophys J 2009;96:4709–16.Google Scholar
[261]
Das G, Chirumamilla M, Toma A, Gopalakrishnan A, Zaccaria RP, Alabastri A, Leoncini M, Di Fabrizio E. Plasmon based biosensor for distinguishing different peptides mutation states. Scientific reports 2013;3:1792.Google Scholar
[262]
Bartel DP. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 2004;116:281–97.Google Scholar
[263]
Zhang B, Wang Q, Pan X. MicroRNAs and their regulatory roles in animals and plants. J Cell Physiol 2007;210:279–89.Google Scholar
[264]
Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005;120:15–20.Google Scholar
[265]
Calin GA, Croce CM. Genomics of chronic lymphocytic leukemia microRNAs as new players with clinical significance. Semin Oncol 2006;33:167–73.Google Scholar
[266]
Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M, Wojcik SE, Aqeilan RI, Zupo S, Dono M, Rassenti L, Alder H, Volinia S, Liu CG, Kipps TJ, Negrini M, Croce CM. miR-15 and miR-16 induce apoptosis by targeting BCL2. P Natl Acad Sci USA 2005;102:13944–9.Google Scholar
[267]
Esquela-Kerscher A, Slack FJ. Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer 2006;6:259–69.Google Scholar
[268]
Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, Downing JR, Jacks T, Horvitz HR, Golub TR. MicroRNA expression profiles classify human cancers. Nature 2005;435:834–8.Google Scholar
[269]
Nelson PT, BaldwinDA, Scearce LM, Oberholtzer JC, Tobias JW, Mourelatos Z. Microarray-based, high-throughput gene expression profiling of microRNAs. Nat Method 2004;1:155–61.Google Scholar
[270]
Driskell JD, Seto AG, Jones LP, Jokela S, Dluhy RA, Zhao YP, Tripp RA. Rapid microRNA (miRNA) detection and classification via surface-enhanced Raman spectroscopy (SERS). Biosens Bioelectron 2008;24:917–22.Google Scholar
[271]
Driskell JD, Primera-Pedrozo OM, Dluhy RA, Zhao Y, Tripp RA. Quantitative surface-enhanced Raman spectroscopy based analysis of MicroRNA mixtures. Appl Spectros 2009;63: 1107–14.Google Scholar
[272]
Driskell JD, Tripp RA. Label-free SERS detection of microRNA based on affinity for an unmodified silver nanorod array substrate. Chem Commun 2010;46:3298–300.Google Scholar
[273]
Abell JL, Garren JM, Driskell JD, Tripp RA, Zhao Y. Label-free detection of Micro-RNA hybridization using surface-enhanced Raman spectroscopy and least-squares analysis. J Am Chem Soc 2012;134:12889–92.Google Scholar
[274]
Esteller M. Molecular origins of cancer: epigenetics in cancer. N Engl J Med 2008;358:1148–59.Google Scholar
[275]
Kriaucionis S, Heintz N. The nuclear DNA base 5-hydroxymethylcytosine is present in purkinje neurons and the brain. Science 2009;324:929–30.Google Scholar
[276]
Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, Agarwal S, Iyer LM, Liu DR, Aravind L, Rao A. Conversion of 5-Methylcytosine to 5-Hydroxymethylcytosine in Mammalian DNA by MLL Partner TET1. Science 2009;324:930–5.Google Scholar
[277]
Esteller M. CpG island hypermethylation and tumor suppressor genes: a booming present, a brighter future. Oncogene 2002;21:5427–40.Google Scholar
[278]
Laird PW. The power and the promise of DNA methylation markers. Nat Rev Cancer 2003;3:253–66.Google Scholar
[279]
Muller HM, Widschwendter A, Fiegl H, Ivarsson L, Goebel G, Perkmann E, Marth C, Widschwendter M. DNA methylation in serum of breast cancer patients: an independent prognostic marker. Cancer Res 2003;63:7641–5.Google Scholar
[280]
Yu J, Cheng YY, Tao Q, Cheung KF, Lam CN, Geng H, Tian LW, Wong YP, Tong JH, Ying JM, Jin H, To KF, Chan FK, Sung JJ. Methylation of protocadherin 10, a novel tumor suppressor, is associated with poor prognosis in patients with gastric cancer. Gastroenterology 2009;136:640–51.Google Scholar
[281]
Shames DS, Minna JD, Gazdar AF. Methods for detecting DNA methylation in tumors: From bench to bedside. Cancer Lett 2007;251:187–98.Google Scholar
[282]
Hu J, Zhang C-y. Single base extension reaction-based surface enhanced Raman spectroscopy for DNA methylation assay. Biosens Bioelectron 2012;31:451–7.Google Scholar
[283]
Barhoumi A, Halas NJ. Detecting chemically modified DNA bases using surface-enhanced Raman spectroscopy. J Phys Chem Lett 2011;2:3118–23.Google Scholar
[284]
El-Said WA, Kim TH, Kim H, Choi JW. Detection of effect of chemotherapeutic agents to cancer cells on gold nanoflower patterned substrate using surface-enhanced Raman scattering and cyclic voltammetry. Biosens Bioelectron 2010;26:1486–92.Google Scholar
[285]
Farquharson S, Gift A, Shende C, Inscore F, Ordway B, Farquharson C, Murren J. Surface-enhanced Raman spectral measurements of 5-fluorouracil in saliva. Molecules 2008;13:2608–27.Google Scholar
[286]
Barhoumi A, Zhang D, Tam F, Halas NJ. Surface-enhanced Raman spectroscopy of DNA. J Am Chem Soc 2008;130:5523–9.Google Scholar
[287]
Ock K, Jeon WI, Ganbold EO, Kim M, Park J, Seo JH, Cho K, Joo SW, Lee SY. Real-time monitoring of glutathione-triggered thiopurine anticancer drug release in live cells investigated by surface-enhanced Raman scattering. Anal Chem 2012;84:2172–8.Google Scholar
[288]
Wang L-S, Chuang M-C, Ho J-a A. Nanotheranostics - a review of recent publications. Int J Nanomed 2012;7:4679–95.Google Scholar
[289]
Lee JE, Lee N, Kim T, Kim J, Hyeon T. Multifunctional mesoporous silica nanocomposite nanoparticles for theranostic applications. Accounts Chem Res 2011;44:893–902.Google Scholar
[290]
Zhang Y, Qian J, Wang D, Wang Y, He S. Multifunctional gold nanorods with ultrahigh stability and tunability for in vivo fluorescence imaging, SERS detection, and photodynamic therapy. Angew Chem-Int Edit 2013;52:1148–51.Google Scholar
[291]
Fales AM, Yuan H, Vo-Dinh T. Cell-penetrating Peptide enhanced intracellular Raman imaging and photodynamic therapy. Mole pharmaceutics 2013;10:2291–8.Google Scholar
[292]
Plaetzer K, Kiesslich T, Oberdanner CB, Krammer B. Apoptosis following photodynamic tumor therapy: Induction, mechanisms and detection. Curr Pharm Design 2005;11:1151–65.Google Scholar
[293]
Tian L, Gandra N, Singamaneni S. Monitoring controlled release of payload from gold nanocages using surface enhanced Raman scattering. ACS Nano 2013;7:4252–60.Google Scholar
[294]
Song J, Zhou J, Duan H. Self-assembled plasmonic vesicles of SERS-encoded amphiphilic gold nanoparticles for cancer cell targeting and traceable intracellular drug delivery. J Am Chem Soc 2012;134:13458–69.Google Scholar
[295]
Mahajan S, Richardson J, Brown T, Bartlett PN. SERS-melting: a new method for discriminating mutations in DNA sequences. J Am Chem Soc 2008;130:15589–601.Google Scholar
[296]
Mahajan S, Richardson J, Ben Gaied N, Zhao ZY, Brown T, Bartlett PN. The use of an electroactive marker as a SERS label in an e-melting mutation discrimination assay. Electroanalysis 2009;21:2190–7.Google Scholar
[297]
Lubamba B, Dhooghe B, Noel S, Leal T. Cystic fibrosis: Insight into CFTR pathophysiology and pharmacotherapy. Clin Biochem 2012;45:1132–44.Google Scholar
[298]
Corrigan DK, Gale N, Brown T, Bartlett PN. Analysis of short tandem repeats by using SERS monitoring and electrochemical melting. Angew Chem-Int Edit 2010;49:5917–20.Google Scholar
[299]
Jiang X, Jiang Z, Xu T, Su S, Zhong Y, Peng F, Su Y, He Y. Surface-enhanced Raman scattering-based sensing in vitro: facile and label-free detection of apoptotic cells at the single-cell level. Anal Chem 2013;85:2809–16.Google Scholar
[300]
Sathuluri RR, Yoshikawa H, Shimizu E, Saito M, Tamiya E. Gold nanoparticle-based surface-enhanced Raman scattering for noninvasive molecular probing of embryonic stem cell differentiation. Plos One 2011;6:e22802.Google Scholar
[301]
Huefner A, Kuan W-L, Barker RA, Mahajan S. Intracellular SERS nanoprobes for distinction of different neuronal cell types. Nano Lett 2013;13:2463–70.Google Scholar
[302]
Neumann O, Zhang DM, Tam F, Lal S, Wittung-Stafshede P, Halas NJ. Direct optical detection of aptamer conformational changes induced by target molecules. Anal Chem 2009;81:10002–6.Google Scholar
[303]
Chen JW, Jiang JH, Gao X, Liu GK, Shen G, Yu R. A new aptameric biosensor for cocaine based on surface-enhanced Raman scattering spectroscopy. Chem Eur J 2008;14:8374–82.Google Scholar
[304]
Sanles-Sobrido M, Rodriguez-Lorenzo L, Lorenzo-Abalde S, Gonzalez-Fernandez A, Correa-Duarte MA, Alvarez-Puebla RA, Liz-Marzán LM. Label-free SERS detection of relevant bioanalytes on silver-coated carbon nanotubes: the case of cocaine. Nanoscale 2009;1:153–8.Google Scholar
[305]
Tu Q, Eisen J, Chang C. Surface-enhanced Raman spectroscopy study of indolic molecules adsorbed on gold colloids. J Biomed Opt 2010;15:020512.Google Scholar
[306]
Perez-Pineiro R, Correa-Duarte MA, Salgueirino V, Alvarez-Puebla RA. SERS assisted ultra-fast peptidic screening: a new tool for drug discovery. Nanoscale 2012;4:113–6.Google Scholar
[307]
Yuen JM, Shah NC, Walsh JT, Jr, Glucksberg MR, Van Duyne RP. Transcutaneous glucose sensing by surface-enhanced spatially offset Raman spectroscopy in a rat model. Anal Chem 2010;82:8382–5.Google Scholar
[308]
Hsu P-H, Chiang HK. Surface-enhanced Raman spectroscopy for quantitative measurement of lactic acid at physiological concentration in human serum. J Raman Spectros 2010;41:1610–4.Google Scholar
[309]
Manno D, Filippo E, Fiore R, Serra A, Urso E, Rizzello A, Maffia M. Monitoring prion protein expression in complex biological samples by SERS for diagnostic applications. Nanotechnology 2010;21:165502.Google Scholar
[310]
Alvarez-Puebla RA, Zubarev ER, Kotov NA, Liz-Marzan LM. Self-assembled nanorod supercrystals for ultrasensitive SERS diagnostics. Nano Today 2012;7:6–9.Google Scholar
[311]
Alvarez-Puebla RA, Agarwal A, Manna P, Khanal BP, Aldeanueva-Potel P, Carbó-Argibay E, Pazos-Pérez N, Vigderman L, Zubarev ER, Kotov NA, Liz-Marzán LM. Gold nanorods 3D-supercrystals as surface enhanced Raman scattering spectroscopy substrates for the rapid detection of scrambled prions. P Natl Acad Sci USA 2011;108:8157–61.Google Scholar
[312]
Serra A, Manno D, Filippo E, Buccolieri A, Urso E, Rizzello A, Maffia M. SERS based optical sensor to detect prion protein in neurodegenerate living cells. Sensor Actuat B-Chem 2011;156:479–85.Google Scholar
[313]
Lorca RA, Varela-Nallar L, Inestrosa NC, Huidobro-Toro JP. The cellular prion protein prevents copper-induced inhibition of P2X(4) receptors. Int J Alzheimer’s Disease 2011;2011: Article ID 706576, 6 pages (doi: 10.4061/2011/706576).Google Scholar
[314]
Becker M, Budich C, Deckert V, Janasek D. Isotachophoretic free-flow electrophoretic focusing and SERS detection of myoglobin inside a miniaturized device. Analyst 2009;134:38–40.Google Scholar
[315]
Brazhe NA, Abdali S, Brazhe AR, Luneva OG, Bryzgalova NY, Parshina EY, Sosnovtseva OV, Maksimov GV. New insight into erythrocyte through in vivo surface-enhanced raman spectroscopy. Biophys J 2009;97:3206–14.Google Scholar
[316]
Neng J, Harpster MH, Zhang H, Mecham JO, Wilson WC, Johnson PA. A versatile SERS-based immunoassay for immunoglobulin detection using antigen-coated gold nanoparticles and malachite green-conjugated protein A/G. Biosens Bioelectron 2010;26:1009–1015.Google Scholar
[317]
Chen Y, Cheng H, Tram K, Zhang S, Zhao Y, Han L, Chen Z, Huan S. A paper-based surface-enhanced resonance Raman spectroscopic (SERRS) immunoassay using magnetic separation and enzyme-catalyzed reaction. Analyst 2013;138:2624–31.Google Scholar
[318]
Chen J-W, Lei Y, Liu X-J, Jiang J-H, Shen GL, Yu RQ. Immunoassay using surface-enhanced Raman scattering based on aggregation of reporter-labeled immunogold nanoparticles. Anal Bioanal Chem 2008;392:187–93.Google Scholar
[319]
He L, Deen B, Rodda T, Ronningen I, Blasius T, Haynes C, Diez-Gonzalez F, Labuza TP. Rapid detection of ricin in milk using immunomagnetic separation combined with surface-enhanced Raman spectroscopy. J Food Science 2011;76:N49–53.Google Scholar
[320]
He L, Lamont E, Veeregowda B, Sreevatsan S, Haynes CL, Diez-Gonzalez F, Labuza TP. Aptamer-based surface-enhanced Raman scattering detection of ricin in liquid foods. Chem Science 2011;2:1579–82.Google Scholar
[321]
Zhu Y, Kuang H, Xu L, Ma W, Peng C, Hua Y, Wang L, Xu C. Gold nanorod assembly based approach to toxin detection by SERS. J Mater Chem 2012;22:2387–91.Google Scholar
[322]
Guven B, Boyaci IH, Tamer U, Calik P. A rapid method for detection of genetically modified organisms based on magnetic separation and surface-enhanced Raman scattering. Analyst 2012;137:202–8.Google Scholar
[323]
Muniz-Miranda M, Gellini C, Salvi PR, Pagliai M. Surface-enhanced Raman micro-spectroscopy of DNA/RNA bases adsorbed on pyroxene rocks as a test of in situ search for life traces on Mars. J Raman Spectros 2010;41:12–15.Google Scholar
[324]
Arslanoglu J, Zaleski S, Loike J. An improved method of protein localization in artworks through SERS nanotag-complexed antibodies. Anal Bioanal Chem 2011;399:2997–3010.Google Scholar