[1]
Alivisatos AP, Johnsson KP, Peng X, Wilson TE, Loweth CJ, Bruchez Jr. MP, Schultz PG. Organization of ‘nanocrystal molecules’ using DNA. Nature 1996;382:609–11.Google Scholar
[2]
Brousseau III LC, Novak JP, Marinakos SM, Feldheim DL. Assembly of phenylacetylene-bridged gold nanocluster dimers and trimers. Adv Mater 1999;11:447–9.Google Scholar
[3]
Bishop KJM, Wilmer CE, Soh S, Grzybowski BA. Nanoscale forces and their uses in self-assembly. Small 2009;5:1600–30.Google Scholar
[4]
Choi CL, Alivisatos AP. From artificial atoms to nanocrystal molecules: preparation and properties of more complex nanostructures. Annu Rev Phys Chem 2010;61:369–89.Google Scholar
[5]
Romo-Herrera JM, Alvarez-Puebla RA, Liz-Marzan LM. Controlled assembly of plasmonic colloidal nanoparticle clusters. Nanoscale 2011;3:1304–15.Google Scholar
[6]
Guerrero-Martinez A, Alonso-Gomez JL, Auguie B, Cid MM, Liz-Marzan LM. From individual to collective chirality in metal nanoparticles. Nano Today 2011;6:381–400.Google Scholar
[7]
Cheng JY, Ross CA, Thomas EL, Smith HI, Vancso GJ. Fabrication of nanostructures with long-range order using block copolymer lithography. Appl Phys Lett 2002;81:3657–9.Google Scholar
[8]
Darling SB. Directing the self-assembly of block copolymers. Proc Polym Sci 2007;32:1152–204.Google Scholar
[9]
Smart T, Lomas H, Massignani M, Flores-Merino MV, Perez LR, Battaglia G. Block copolymer nanostructures. Nano Today 2008;3:38–46.Google Scholar
[10]
Bang J, Jeong U, Ryu DY, Russell TP, Hawker CJ. Block copolymer nanolithography: translation of molecular level control to nanoscale patterns. Adv Mater 2009;21:4769–92.Google Scholar
[11]
Polleux J, Rasp M, Louban I, Plath N, Feldhoff A, Spatz JP. Benzyl alcohol and block copolymer micellar lithography: a versatile route to assembling gold and in situ generated titania nanoparticles into uniform binary nanoarrays. ACS Nano 2011;5:6355–64.Google Scholar
[12]
Vignolini S, Yufa NA, Cunha PS, Guldin S, Rushkin I, Stefik M, Hur K, Wiesner U, Baumberg JJ, Steiner U. A 3D optical metamaterial made by self-assembly. Adv Mater 2012;24:OP23–7.Google Scholar
[13]
Wang X, Kwon DH, Werner DH, Khoo I-C, Kildishev AV, Shalaev VM. Tunable optical negative-index metamaterials employing anisotropic liquid crystals. Appl Phys Lett 2007;91:143122.Google Scholar
[14]
Pratibha R, Park K, Smalyukh II, Park W. Tunable optical metamaterial based on liquid crystal-gold nanosphere composite. Opt Express 2009;17:19459–69.Google Scholar
[15]
Pratibha R, Park W, Smalyukh II. Colloidal gold nanosphere dispersions in smectic liquid crystals and thin nanoparticle-decorated smectic films. J Appl Phys 2010;107:063511.Google Scholar
[16]
Zappone B, Lacaze E, Hayeb H, Goldmann M, Boudet N, Barois P, Alba M. Self-ordered arrays of linear defects and virtual singularities in thin smectic-A films. Soft Mater 2011; 7:1161–7.Google Scholar
[17]
Dintinger J, Tang B-J, Zeng X, Liu F, Kienzler T, Mehl GH, Ungar G, Rockstuhl C, Scharf T. A Self-organized anisotropic liquid-crystal plasmonic metamaterial. Adv Mater 2013, DOI: 10.1002/adma.201203965.Google Scholar
[18]
Zeng X, Liu F, Fowler AG, Ungar G, Cseh L, Mehl GH, Macdonald JE. 3D ordered gold strings by coating nanoparticles with mesogens. Adv Mater 2009;21:1746–50.Google Scholar
[19]
Macfarlane RJ, Lee B, Jones MR, Harris N, Schatz GC, Mirkin CA. Nanoparticle superlattice engineering with DNA. Science 2011; 334:204–8.Google Scholar
[20]
Cheng W, Campolongo MJ, Cha JJ, Tan SJ, Umbach CC, Muller DA, Luo D. Free-standing nanoparticle superlattice sheets controlled by DNA. Nature Mater 2009;8:519–25.Google Scholar
[21]
Hung AM, Micheel CM, Bozano LD, Osterbur LW, Wallraff GM, Cha JN. Large-area spatially ordered arrays of gold nanoparticles directed by lithographically confined DNA origami. Nature Nanotech 2010;5:121–6.Google Scholar
[22]
Chen Y, Fu J, Ng KC, Tang Y, Cheng W. Free-standing polymer nanoparticle superlattice sheets self-assembled at the air liquid interface. Cryst Growth Des 2011;11:4742–6.Google Scholar
[23]
Ng KC, Udagedara IB, Rukhlenko ID, Chen Y, Tang Y, Premaratne M, Cheng W. Free-standing plasmonic-nanorod superlattice sheets. ACS Nano 2012;6:925–34.Google Scholar
[24]
Wen T, Majetich SA. Ultra-large-area self-assembled monolayers of nanoparticles. ACS Nano 2011;5:8868–76.Google Scholar
[25]
Stebe KJ, Lewandowski E, Ghosh M. Oriented assembly of metamaterials. Science 2009;325:159–60.Google Scholar
[26]
Tamma VA, Lee J-H, Wu Q, Park W. Visible frequency magnetic activity in silver nanocluster metamaterial. Appl Opt 2010;49:A11–7.Google Scholar
[27]
Lee JH, Wu Q, Park W. Metal nanocluster metamaterial fabricated by the colloidal self-assembly. Opt Lett 2009;34:443–5.Google Scholar
[28]
Lerond T, Proust J, Yockell-Lelievre H, Gerard D, Plain J. Self-assembly of metallic nanoparticles into plasmonic rings. Appl Phys Lett 2011;99:123110.Google Scholar
[29]
Cui Y, Björk MT, Liddle JA, Sönnichsen C, Boussert B, Alivisatos AP. Integration of colloidal nanocrystals into lithographically patterned devices. Nano Lett 2004;4:1093–8.Google Scholar
[30]
Kraus T, Malaquin L, Schmid H, Riess W, Spencer ND, Wolf H. Nanoparticle printing with single-particles resolution. Nature Nanotech 2007;2:570–6.Google Scholar
[31]
Fan JA, Bao K, Sun L, Bao J, Manoharan VN, Nordlander P, Capasso F. Plasmonic mode engineering with templated self-assembled nanoclusters. Nano Lett 2012;12; 5381–24.Google Scholar
[32]
Henzie J, Grünwald M, Widmer-Cooper A, Geissler PL, Yang P. Self-assembly of uniform polyhedral silver nanocrystals into densest packings and exotic superlattices. Nature Mater 2012;11:131–7.Google Scholar
[33]
Tao AR, Ceperley DP, Sinsermsuksakul P, Neureuther AR, Yang P. Self-organized silver nanoparticles for three-dimensional plasmonic crystals. Nano Lett 2008;8:4033–8.Google Scholar
[34]
Talapin DV, Shevchenko EV, Bodnarchuk MI, Ye X, Cheng J, Murray CB. Quasicrystalline order in self-assembled binary nanoparticle superlattices. Nature 2009;461:964–7.Google Scholar
[35]
Fan JA, Wu C, Bao K, Bao J, Bardhan R, Halas NJ, Manoharan VN, Nordlander P, Shvets G, Capasso F. Self-assembled plasmonic nanoparticle clusters. Science 2010;328:1135–8.Google Scholar
[36]
Chuntonov L, Haran G. Trimeric plasmonic molecules: the role of symmetry. Nano Lett 2011;11:2440–5.Google Scholar
[37]
Fan JA, Bao K, Wu C, Bao J, Bardhan R, Halas NJ, Manoharan VN, Shvets G, Nordlander P, Capasso F. Fano-like interference in self-assembled plasmonic quadrumer clusters. Nano Lett 2010;10:4680–5.Google Scholar
[38]
Tan SJ, Campolongo MJ, Luo D, Cheng W. Building plasmonic nanostructures with DNA. Nature Nanotech 2011;6:268–76.Google Scholar
[39]
Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 1996;382:607–9.Google Scholar
[40]
Wilner OI, Willner I. Functionalized DNA nanostructures. Chem Rev 2012;112:2528–56.Google Scholar
[41]
Watanabe-Tamaki R, Ishikawa A, Tanaka T, Zako T, Maeda M. DNA-templating mass production of gold trimer rings for optical metamaterials. J Phys Chem C 2012;116:15028–33.Google Scholar
[42]
Claridge SA, Goh SL, Frechet JMJ, Williams SC, Micheel CM, Alivisatos AP. Directed assembly of discrete gold nanoparticle groupings using branched DNA scaffolds. Chem Mater 2005;17:1628–35.Google Scholar
[43]
Soto CM, Srinivasan A, Ratna BR. Controlled assembly of mesoscale structures using DNA as molecular bridges. J Am Chem Soc 2002;124:8508–9.Google Scholar
[44]
Sheikholeslami S, Jun YW, Jain PK, Alivisatos AP. Coupling of optical resonances in a compositionally asymmetric plasmonic nanoparticle dimer. Nano Lett 2010;10:2655–60.Google Scholar
[45]
Fan JA, He Y, Bao K, Wu C, Bao J, Schade NB, Manoharan VN, Shvets G, Nordlander P, Liu DR, Capasso F. DNA-enabled self-assembly of plasmonic nanoclusters. Nano Lett 2011;11:4859–64.Google Scholar
[46]
Barrow SJ, Funston AM, Gomez DE, Davis TJ, Mulvaney P. Surface plasmon resonances in strongly coupled gold nanosphere chains from monomer to hexamer. Nano Lett 2011;11:4180–7.Google Scholar
[47]
Xing H, Wang Z, Xu Z, Wong NY, Xiang Y, Liu GL, Lu Y. DNA-directed assembly of asymmetric nanoclusters using Janus nanoparticles. ACS Nano 2012;6:802–9.Google Scholar
[48]
Nykypanchuk D, Maye MM, van der Lelie D, Gang O. DNA-guided crystallization of colloidal nanoparticles. Nature 2008;451:549–52.Google Scholar
[49]
Mastroianni AJ, Claridge SA, Alivisatos AP. Pyramidal and chiral groupings of gold nanocrystals assembled using DNA scaffolds. J Am Chem Soc 2009;131:8455–9.Google Scholar
[50]
Sharma S, Chhabra R, Cheng A, Brownell J, Liu Y, Yan H. Controll of self-assembly of DNA tubules through integration of gold nanoparticles. Science 2009;323:112–6.Google Scholar
[51]
Rothemund PWK. Folding DNA to create nanosclae shapes and patterns. Nature 2006;440:297–302.Google Scholar
[52]
Shen X, Song C, Wang J, Shi D, Wang Z, Liu N, Ding B. Rolling up gold nanoparticle-dressed DNA origami into three-dimensional plasmonic chiral nanostructures. J Am Chem Soc 2012;134:164–49.Google Scholar
[53]
Kuzyk A, Schreiber R, Fan Z, Pradatscher G, Roller EM, Högele A, Simmel FC, Govorov AO, Liedl T. DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response. Nature 2012;483:311–4.Google Scholar
[54]
Novak JP, Feldheim DL. Assembly of phenylacetylene-bridged silver and gold nanoparticle arrays. J Am Chem Soc 2000;122:3979–80.Google Scholar
[55]
Mühlig S, Rockstuhl C, Yannopapas V, Bürgi T, Shalkevich N, Lederer F. Optical properties of a fabricated self-assembled bottom-up bulk metamaterial. Opt Express 2011;19:9607–16.Google Scholar
[56]
Shalkevich N, Shalkevich A, Si-Ahmed L, Bürgi T. Reversible formation of gold nanoparticle-surfactant composite assemblies for the preparation of concentrated colloidal solutions. Phys Chem Chem Phys 2009;11:10175–9.Google Scholar
[57]
Dintinger J, Mühlig S, Rockstuhl C, Scharf T. A bottom-up approach to fabricate optical metamaterials by self-assembled metallic nanoparticles. Opt Mater Express 2012;2:269–78.Google Scholar
[58]
Walker DA, Kowalczyk B, de la Cruz MO, Grzybowski BA. Electrostatics at the nanoscale. Nanoscale 2011;3:1316–44.Google Scholar
[59]
Cunningham A, Mühlig S, Rockstuhl C, Bürgi T. Coupling of plasmon resonances in tunable layered arrays of gold nanoparticles. J Phys Chem C 2011;115:8955–60.Google Scholar
[60]
Brown LV, Sobhani H, Lassiter JB, Nordlander P, Halas NJ. Heterodimers: plasmonic properties of mismatched nanoparticle pairs. ACS Nano 2010;4:819–32.Google Scholar
[61]
Hyder MN, Lee SW, Cebeci FC, Schmidt DJ, Shao-Horn Y, Hammond PT. Layer-by-layer assembled polyaniline nanofiber/multiwall carbon nanotube thin film electrodes for high-power and high-energy storage applications. ACS Nano 2011;5: 8552–61.Google Scholar
[62]
Cunningham A, Mühlig S, Rockstuhl C, Bürgi T. Exciting bright and dark eigenmodes in strongly coupled asymmetric metallic nanoparticle arrays. J Phys Chem C 2012;116:17746–52.Google Scholar
[63]
Mühlig S, Cunningham A, Scheeler S, Pacholski C, Bürgi T, Rockstuhl C, Lederer F. Self-assembled plasmonic core-shell clusters with an isotropic magnetic dipole response in the visible range. ACS Nano 2011;5:6586–92.Google Scholar
[64]
Gellner M, Niebling S, Kuschelmeister HY, Schmuck C, Schlücker S. Plasmonically active micron-sized beads for integrated solid-phase synthesis and label-free SERS analysis. Chem Comm 2011;47:12762–4.Google Scholar
[65]
Gellner M, Steinigeweg D, Ichilman S, Salehi M, Schütz M, Kömpe K, Haase M, Schlücker S. 3D self-assembled plasmonic superstructures of gold nanospheres: synthesis and characterization at the single-particle level. Small 2011;7:3445–51.Google Scholar
[66]
Hong Y, Pourmand M, Boriskina SV, Reinhard BM. Enhanced light focusing in self-assembled optoplasmonic clusters with subwavelength dimensions. Adv Mater 2012;25:115–9.Google Scholar
[67]
Pawlak DA, Turczynski S, Gajc M, Kolodziejak K, Diduszko R, Rozniatowski K, Smalc J, Vendik I. How far are we from making metamaterials by self-organization? The microstructure of highly anisotropic particles with an SRR-like geometry. Adv Func Mater 2010;20:1116–24.Google Scholar
[68]
Reyes-Coronado A, Acosra MF, Merino RI, Orera VM, Kenanakis G, Katsarakis N, Kafesaki M, Mavidis C, Garcia de Abajo J, Economou EN, Soukoulis CM. Self-organization approach for THz polaritonic metamaterials. Opt Express 2012;20:14663–82.Google Scholar
[69]
Senyuk B, Evans JS, Ackerman PJ, Lee T, Manna P, Vigderman L, Zubarev ER, van de Lagemaat J, Smalyukh II. Shape-dependent oriented trapping and scaffolding of plasmonic nanoparticles by topological defects for self-assembly of colloidal dimers in liquid crystals. Nano Lett 2012;12:955–63.Google Scholar
[70]
Menzel C, Paul T, Rockstuhl C, Pertsch T, Tretyakov S, Lederer F. Validity of effective material parameters for optical fishnet metamaterials. Phys Rev B 2010;81:035320.Google Scholar
[71]
Albooyeh M, Morits D, Tretyakov SA. Effective electric and magnetic properties of metasurfaces in transition from crystalline to amorphous state. Phys Rev B 2012;85:205110.Google Scholar
[72]
Tretyakov S. Applied electromagnetics. Norwood, MA: Artech House, INC.; 2003.Google Scholar
[73]
Helgert C, Rockstuhl C, Etrich C, Menzel C, Kley E-B, Tünnermann A, Lederer F, Pertsch T. Effective properties of amorphous metamaterials. Phys Rev B 2009;79:233107.Google Scholar
[74]
Rockstuhl C, Menzel C, Mühlig S, Petschulat J, Helgert C, Etrich C, Chipouline A, Pertsch T, Lederer F. Scattering properties of meta-atoms. Phys Rev B 2011;83:245119.Google Scholar
[75]
Pendry JB, Holden AJ, Robbins DJ, Stewart WJ. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans Microwave Theory Tech 1999;47:2075–84.Google Scholar
[76]
Linden S, Enkrich C, Wegener M, Zhou J, Koschny T, Soukoulis CM. Magnetic response of metamaterials at 100 terahertz. Science 2004;306:1351–3.Google Scholar
[77]
Sersic I, Frimmer M, Verhagen E, Koenderink AF. Electric and magnetic dipole coupling in near-infrared split-ring metamaterial arrays. Phys Rev Lett 2009;103:213902.Google Scholar
[78]
Sersic I, Tuambilangana C, Kampfrath T, Koenderink AF. Magnetoelectric point scattering theory for metamaterial scatterers. Phys Rev B 2011;83:245102.Google Scholar
[79]
Petschulat J, Menzel C, Chipouline A, Rockstuhl C, Tünnermann A, Lederer F, Pertsch T. Multipole approach to metamaterials. Phys Rev A 2008;78:043811.Google Scholar
[80]
Rockstuhl C, Lederer F, Etrich C, Zentgraf T, Kuhl J, Giessen H. On the reinterpretation of resonances in split-ring-resonators at normal incidence. Opt Express 2006;14:8827–36.Google Scholar
[81]
Corrigan TD, Kolb PW, Sushkov AB, Drew HD, Schmadel DC, Phaneuf RJ. Optical plasmonic resonances in split-ring resonator structures: an improved LC model. Opt Express 2008;16:19850–64.Google Scholar
[82]
Waterman PC. Symmetry, unitarity, and geometry in electromagnetic scattering. Phys Rev D 1971;3:825–39.Google Scholar
[83]
Mishchenko MI, Travis LD, Mackowski DW. T-matrix computations of light scattering by nonspherical particles: a review. J Quant Spectrosc Radiat Transfer 1996;55:535–75.Google Scholar
[84]
Nieminen TA, Heckenberg NR, Rubinsztein-Dunlop H. Computational modeling of optical tweezers. In: Dholakia K, ed. Spalding GC, 2nd ed. (SPIE) Conference Series 2004;5514:514–23.Google Scholar
[85]
Mackowski DW, Mishchenko MI. Calculation of the T matrix and the scattering matrix for ensembles of spheres. J Opt Soc Am A 1996;13:2266–78.Google Scholar
[86]
Schneider JB, Peden IC. Differential cross section of a dielectric ellipsoid by the T-matrix extended boundary condition method. IEEE Trans Antennas Propag 1988;36:1317–21.Google Scholar
[87]
Nieminen TA, Loka VLY, Stilgoe AB, Knöner G, Branczyk AM, Heckenberg NR, Rubinsztein-Dunlop H. Optical tweezers computational toolbox. J Opt A: Pure Appl Opt 2007;9: 196–203.Google Scholar
[88]
Mühlig S, Menzel C, Rockstuhl C, Lederer F. Multipole analysis of meta-atoms. Metamaterials 2011;5:64–73.Google Scholar
[89]
Xu Y. Electromagnetic scattering by an aggregate of spheres. Appl Opt 1995;34:4573–88.Google Scholar
[90]
Mühlig S, Rockstuhl C, Pniewski J, Simovski CR, Tretyakov SA, Lederer F. Three-dimensional metamaterial nanotips. Phys Rev B 2010;81:075317.Google Scholar
[91]
Bohren CF, Huffman DR. Absorption and scattering of light by small particles. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KgaA; 2004.Google Scholar
[92]
Choy TC. Effective medium theory: principles and applications. New York, USA: Oxford University Press; 1999.Google Scholar
[93]
Sihvola A. Electromagnetic mixing formulas and applications. London, UK: The Institution of Electrical Engineers; 1999.Google Scholar
[94]
Grahn P, Shevchenko A, Kaivola M. Electromagnetic multipole theory for optical nanomaterials. New J Phys 2012;14:093033.Google Scholar
[95]
Palik ED. Handbook of optical constants and solids. Orlando, USA: Acedemic Press; 1985.Google Scholar
[96]
Evlyukhin AB, Reinhardt C, Seidel A, Luk’yanchuk BS, Chichkov BN. Optical response features of Si-nanoparticle arrays. Phys Rev B 2010;82;045404.Google Scholar
[97]
Garcia-Etxarri A, Gomez-Medina R, Froufe-Perez LS, Lopez C, Chantada L, Scheffold F, Aizpurua J, Nieto- Vesperinas M, Saenz JJ. Strong magnetic response of submicron silicon particles in the infrared. Opt Express 2011;19:4815–26.Google Scholar
[98]
Zhao Q, Zhou J, Zhang F, Lippens D. Mie resonance-based dielectric metamaterials. Mater Today 2009;12:60–9.Google Scholar
[99]
Yannopapas V, Moroz A. Negative refractive index metamaterials from inherently non-magnetic materials for deep infrared to terahertz frequency ranges. J Phys Condens Mater 2005;17:3717–34.Google Scholar
[100]
Wheeler MS, Aitchison JS, Mojahedi M. Three-dimensional array of dielectric spheres with an isotropic negative permeability at infrared frequencies. Phys Rev B 2005;72:193103.Google Scholar
[101]
Seo BJ, Ueda T, Itoh T, Fetterman H. Isotropic left handed material at optical frequency with dielectric spheres embedded in negative permittivity medium. Appl Phys Lett 2006;88:161122.Google Scholar
[102]
Jylhä L, Kolmakov I, Maslovski S, Tretyakov S. Modeling of isotropic backward-wave materials composed of resonant spheres. J Appl Phys 2006;99:043102.Google Scholar
[103]
Yannopapas V. Negative refraction in random photonic alloys of polaritonic and plasmonic microspheres. Phys Rev B 2007;75:035112.Google Scholar
[104]
Yannopapas V. Artificial magnetism and negative refractive index in three-dimensional metamaterials of spherical particles at near-infrared and visible frequencies. Appl Phys A 2007;87:259–64.Google Scholar
[105]
Schuller JA, Zia R, Taubner T, Brongersma ML. Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles. Phys Rev Lett 2007;99:107401.Google Scholar
[106]
Wheeler MS, Aitchison JS, Chen JIL, Ozin GA, Mojahedi M. Infrared magnetic response in a random silicon carbide micropowder. Phys Rev B 2009;79:073103.Google Scholar
[107]
Evlyukhin AB, Novikov SM, Zywietz U, Eriksen RL, Reinhard C, Bozhevolnyi SI, Chichkov BN. Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region. Nano Lett 2012;12:3749–55.Google Scholar
[108]
Kuznetsov AI, Miroshnichenko AE,Fu YH, Zhang J, Luk’yanchuk B. Magnetic light. Nature Sci Report 2012;2:492.Google Scholar
[109]
Nordlander P, Oubre C, Prodan E, Li K, Stockman MI. Plasmon hybridization in nanoparticle dimers. Nano Lett 2004;4:899–903.Google Scholar
[110]
Riikonen S, Romero I, Garcia de Abajo FJ. Plasmon tunability in metallodielectric metamaterials. Phys Rev B 2005;71:235104.Google Scholar
[111]
Grahn P, Shevchenko A, Kaivola M. Electric dipole-free interaction of visible light with pairs of subwavelength-size silver particles. Phys Rev B 2012;86:035419.Google Scholar
[112]
Rockstuhl C, Lederer F, Etrich C, Pertsch T, Scharf T. Design of an artificial three-dimensional composite metamaterial with magnetic resonances in the visible range of the electromagnetic spectrum. Phys Rev Lett 2007;99:017401.Google Scholar
[113]
Simovski CR, Tretyakov SA. Model of isotropic resonant magnetism in the visible range based on core-shell clusters. Phys Rev B 2009;79:045111.Google Scholar
[114]
Vallecchi A, Albani M, Capolino F. Collective electric and magnetic plasmonic resonances in spherical nanoclsuters. Opt Express 2011;19:2754–72.Google Scholar
[115]
Urzhumov YA, Shvets G, Fan JA, Capasso F, Brandl D, Nordlander P. Plasmonic nanoclusters: a path towards negative-index metafluids. Opt Express 2007;15: 14129–45.Google Scholar
[116]
Alu A, Salandrino A, Engheta N. Negative effective permeability and left-handed materials at optical frequencies. Opt Express 2006;14:1557–67.Google Scholar
[117]
Alu A, Engheta N. The quest for magnetic plasmons at optical frequencies. Opt Express 2009;17:5723–30.Google Scholar
[118]
Barrow SJ, Wei X, Baldauf JS, Funston AM, Maulvaney P. The surface plasmon modes of self-assembled gold nanocrystals. Nature Commun 2012;3:1275.Google Scholar
[119]
Halas NJ, Lal S, Chang WS, Link S, Nordlander P. Plasmons in strongly coupled metallic nanostructures. Chem Rev 2011;111:3913–61.Google Scholar
[120]
Halas NJ, Plasmonics: an emerging field fostered by Nano Letters. Nano Lett 2010;10:3816–22.Google Scholar
[121]
Enustun BV, Turkevich J. Coagulation of colloidal gold. J Am Chem Soc 1963;85:3317–28.Google Scholar
[122]
Kimling J, Maier M, Okenve B, Kotaidis V, Ballot H, Plech A. Turkevich method for gold nanoparticle synthesis revisited. J Phys Chem B 2006;110:15700–7.Google Scholar
[123]
Lee PC, Meisel D. Adsorption and surface-enhanced raman of dyes on silver and gold sols. J Phys Chem 1982;86:3391–5.Google Scholar
[124]
Goulet PJG, Lennox RB. New insights into Brust-Schiffrin metal nanoparticle synthesis. J Am Chem Soc 2010;132:9582–4.Google Scholar
[125]
Perez-Juste J, Pastoriza-Santos I, Liz-Marzan LM, Mulvaney P. Gold nanorods: synthesis, characterization and applications. Coord Chem Rev 2005;249:1870–901.Google Scholar
[126]
Qi H, Lepp A, Heiney PA, Hegmann T. Effects of hydrophilic and hydrophobic gold nanoclusters on the stability and ordering of bolaamphiphilic liquid crystals. J Mater Chem 2007;17:2139–44.Google Scholar
[127]
Chen C-L, Zhang P, Rosi NL. A new peptide-based method for the design and synthesis of nanoparticle superstructures: construction of highly ordered gold nanoparticle double helices. J Am Chem Soc 2008;130:13555–7.Google Scholar
[128]
Shevchenko EV, Talapin DV, Kotov NA, O’Brien S, Murray CB. Structural diversity in binary nanoparticle superlattices. Nature 2006;439:55–9.Google Scholar
[129]
Nie Z, Fava D, Rubinstein M, Kumacheva E. “Supramolecular” assembly of gold nanorods end-terminated with polymer “pom-poms”: effect of pom-pom structure on the association modes. J Am Chem Soc 2008;130:3683–9.Google Scholar
[130]
Lim D-k, Jeon K-S, Kim HM, Nam J-M, Suh YD. Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection. Nature Mater 2010;9:60–7.Google Scholar
[131]
Kühn S, Hakanson U, Rogobete L, Sandoghdar V. Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. Phys Rev Lett 2006;97:017402.Google Scholar
[132]
Bharadwaj P, Deutsch B, Novotny L. Optical antennas. Adv Opt Photon 2009;1;438–83.Google Scholar
[133]
Kinkhabwala A, Yu Z, Fan S, Avlasevich Y, Müllen K, Moerner WE. Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna. Nature Photon 2009;3:654–57.Google Scholar
[134]
Curto AG, Volpe G, Taminiau TH, Kreuzer MP, Quidant R, van Hulst NF. Unidirectional emission of a quantum dot coupled to a nanoantenna. Science 2010;329:930–3.Google Scholar
[135]
Esteban R, Teperik TV, Greffet JJ. Optical patch antennas for single photon emission using surface plasmon resonances. Phys Rev Lett 2010;104:026802.Google Scholar
[136]
Filter F, Mühlig S, Eichelkraut T, Rockstuhl C, Lederer F. Controlling the dynamics of quantum mechanical systems sustaining dipole-forbidden transitions via optical nanoantennas. Phys Rev B 2012;86:035404.Google Scholar
[137]
Kern AM, Martin OJF. Strong enhancement of forbidden atomic transitions using plasmonic nanostructures. Phys Rev A 2012;85:022501.Google Scholar
[138]
Lobanov SV, Weiss T, Dregely D, Giessen H, Gippius NA, Tikhadeev SG. Emission properties of an oscillating point dipole from a gold Yagi-Uda nanoantenna array. Phys Rev B 2012;85:155137.Google Scholar
[139]
Maksymov IS, Staude I, Miroshnichenko AE, Kivshar YS. Optical Yagi-Uda antennas. Nanophoton 2012;1: 65–81.Google Scholar
[140]
Jain PK, Eustis S, El-Sayed MA. Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model. J Phys Chem B 2006;110:18243–53.Google Scholar
[141]
Decher G. Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 1997;277:1232–7.Google Scholar
[142]
Chen X, Lenhert S, Hirtz M, Lu N, Fuchs H, Chi L. Langmuir–Blodgett patterning: a bottom-up way to build mesostructures over large areas. Acc Chem Res 2007;40:393–401.Google Scholar
[143]
Iler RK. The chemistry of silica: solubility, polymerization, colloid and surface properties and the biochemistry. New York, USA: John Wiley and Sons Inc.; 1979.Google Scholar
[144]
Schmitt J, Decher G, Dressick WJ, Brandow SL, Geer RE, Shashidhar R, Calvert JM. Metal nanoparticle/polymer superlattice films: fabrication and control of layer structure. Adv Mater 1997;9:61–5.Google Scholar
[145]
Lavalle P, Voegel JC, Vautier D, Senger B, Schaaf P, Ball V. Dynamic aspects of films prepared by a sequential deposition of species: perspectives for smart and responsive materials. Adv Mater 2011;23:1191–221.Google Scholar
[146]
Rechberger W, Hohenau A, Leitner A, Krenn JR, Lamprecht B, Aussenegg FR. Optical properties of two interacting gold nanoparticles. Opt Commun 2003;220:137–41.Google Scholar
[147]
Prodan E, Radloff C, Halas NJ, Nordlander P. A hybridization model for the plasmon response of complex nanostructures. Science 2003;302:419–22Google Scholar
[148]
Vogelgesang R, Dmitriev A. Real-space imaging of nanoplasmonic resonances. Analyst 2010;135:1175–81.Google Scholar
[149]
Roy D, Fendler J. Reflection and absorption techniques for optical characterization of chemically assembled nanomaterials. Adv Mater 2004;16:479–508.Google Scholar
[150]
Okamoto T. Near field spectral analysis of metallic beads. In: Kawata S. ed. Near field optics and surface plasmon polaritons. Topics Appl Phys 2001;81:97–123. Heidelberg, Germany: Springer Verlag Berlin, 2001.Google Scholar
[151]
Smith DR, Schultz S, Markos P, Soukoulis CM. Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients. Phys Rev B 2002;65:195104.Google Scholar
[152]
Menzel C, Rockstuhl C, Paul T, Lederer F, Pertsch T. Retrieving effective parameters for metamaterials at oblique incidence. Phys Rev B 2008;77:195328.Google Scholar
[153]
Pshenay-Severin E, Setzpfandt F, Helgert C, Hübner U, Menzel C, Chipouline A, Rockstuhl C, Tünnermann A, Lederer F, Pertsch T. Experimental determination of the dispersion relation of light in metamaterials by white-light interferometry. J Opt Soc Am B 2010;27:660–6.Google Scholar
[154]
Jie Y, Yonghua L, Pei W, Hai M. Integral fluorescence enhancement by silver nanoparticles controlled via PMMA matrix. Opt Commun 2011;284:494–7.Google Scholar
[155]
Muskens OL, Bachelier G, Fatti ND, Vallee F, Brioude A, Jiang X, Pileni MP. Quantitative absorption spectroscopy of a single gold nanorod. J Phys Chem C 2008;112:8917–21.Google Scholar
[156]
Van der Zande BMI, Pages L, Hikmet RAM, van Blaaderen A. Optical properties of aligned rod-shaped gold particles in poly(vinyl alcohol) films. J Phys Chem B 1999;103:5761–7.Google Scholar
[157]
Oates TWH, Wormeester H, Arwin H. Characterization of plasmonic effects in thin films and metamaterials using spectroscopic ellipsometry. Prog Surf Sci 2011;86:328–76.Google Scholar
[158]
Dolling G, Enkrich C, Wegener M, Soukoulis CM, Linden S. Simultaneous negative phase and group velocity of light in a metamaterial. Science 2006;312:892–4.Google Scholar
[159]
Zijlstra P, Orrit M. Single metal nanoparticles: optical detection, spectroscopy and applications. Rep Prog Phys 2011;74:106401.Google Scholar
[160]
Wahlstrom EE. Optical crystallography. New York, USA: John Wiley and Sons; 1969.Google Scholar
[161]
Scharf T. Polarized light in liquid crystals and polymers. New York, USA: John Wiley and Sons; 2006.Google Scholar
[162]
Husnik M, Klein MW, Feth N, König M, Niegemann J, Busch K, Linden S, Wegener M. Absolute extinction cross-section of individual magnetic split-ring resonators. Nature Photon 2008;2:614–7.Google Scholar
[163]
Sersic I, Tuambilangana C, Koenderink AF. Fourier microscopy of single plasmonic scatterers. New J Phys 2011;13:083019.Google Scholar
[164]
Taminiau TH, Karaveli S, van Hulst NF, Zia R. Quantifying the magnetic nature of light emission. Nature Commun 2012;3:979.Google Scholar
[165]
Courjon D, Bainier C. Near field microscopy and near field optics. Rep Prog Phys 1994;57:989.Google Scholar
[166]
Fischer UC, Pohl DW. Observation of single-particle plasmons by near-field optical microscopy. Phys Rev Lett 1989;62: 458–61.Google Scholar
[167]
Zayats AV, Smolyaninov II. Near-field photonics: surface plasmon polaritons and localized surface plasmons. J Opt A: Pure Appl Opt 2003;5:S16–50.Google Scholar
[168]
Wiederrecht GP. Near-field optical imaging of noble metal nanoparticles. Eur Phys J Appl Phys 2004;28:3–18.Google Scholar
[169]
Imura K, Okamoto H. Development of novel near-field microspectroscopy and imaging of local excitations and wave functions of nanomaterials. Bull Chem Soc Jpn 2008;81: 659–675.Google Scholar
[170]
Esteban R, Vogelgesang R, Dorfmüller J, Dmitriev A, Rockstuhl C, Etrich C, Kern K. Direct near-field optical imaging of higher order plasmonic resonances. Nano Lett 2008;8:3155–9.Google Scholar
[171]
Esslinger M, Dorfmüller J, Khunsin W, Vogelgesang R, Kern K. Background-free imaging of plasmonic structures with cross-polarized apertureless scanning near-field optical microscopy. Rev Sci Instrum 2012;83:033704.Google Scholar
[172]
Nelayah J,Kociak M, Stephan O, Garcia de Abajo FJ, Tence M, Henrard L, Taverna D, Pastoriza-Santos I, Liz-Marzan LM, Colliex C. Mapping surface plasmons on a single metallic nanoparticle. Nature Phys 2007;3:348–53.Google Scholar
[173]
Garcia de Abajo FJ. Optical excitations in electron microscopy. Rev Mod Phys 2010;82:209–75.Google Scholar
[174]
Von Cube F, Irsen S, Niegemann J, Matyssek C, Hergert W, Busch K, Linden S. Spatio-spectral characterization of photonic meta-atoms with electron energy-loss spectroscopy. Opt Mater Express 2011;1:1009–18.Google Scholar
[175]
Wegener M, Linden S. Shaping optical space with metamaterials. Physics Today 2010;63:32–6.Google Scholar
[176]
Kadic M, Guenneau S, Enoch S, Huidobro PA, Martin-Moreno L, Garcia-Vidal FJ, Renger J, Quidant R. Transformation plasmonics. Nanophoton 2012;1:51–64.Google Scholar
[177]
Alù A, Engheta N. Plasmonic and metamaterial cloaking: physical mechanisms and potentials. J Opt A: Pure Appl Opt 2008;10:093002.Google Scholar
[178]
Rockstuhl C, Scharf T. A metamaterial based on coupled metallic nanoparticles and its band-gap property. J Micros 2008;229:281–6.Google Scholar
[179]
Mühlig S, Farhat M, Rockstuhl C, Lederer F. Cloaking dielectric spherical objects by a shell of metallic nanoparticles. Phys Rev B 2011;83:195116.Google Scholar
[180]
West PR, Ishii S, Naik GV, Emani NK, Shalaev VM, Boltasseva A. Searching for better plasmonic materials. Laser & Photon Rev 2010;4:795–808.Google Scholar
[181]
Monti A, Bilotti F, Toscano A. Optical cloaking of cylindrical objects by using covers made of core–shell nanoparticles. Opt Lett 2011;36:4479–91.Google Scholar
[182]
Farhat M, Mühlig S, Rockstuhl C, Lederer F. Scattering cancellation of the magnetic dipole field from macroscopic spheres. Opt Express 2012;20:13896–906.Google Scholar
[183]
Alù A, Engheta N. Cloaking a sensor. Phys Rev Lett 2009;102:233901.Google Scholar
[184]
Fan P, Chettiar UK, Cao L, Afshinmanesh F, Engheta N, Brongersma ML. An invisible metal-semiconductor photodetector. Nature Photon 2012;6:380–5.Google Scholar
[185]
Tricarico S, Bilotti F, Vegni L. Reduction of optical forces exerted on nanoparticles covered by scattering cancellation based plasmonic cloaks. Phys Rev B 2010;82:045109.Google Scholar
[186]
Bilotti F, Tricarico S, Pierini F, Vegni L. Cloaking apertureless near-field scanning optical microscopy tips. Opt Lett 2011;36:211–3.Google Scholar
[187]
Hentschel M, Wu L, Schäferling M, Bai P, Ping E, Giessen H. Optical properties of chiral three-dimensional plasmonic oligomers at the onset of charge-transfer plasmons. ACS Nano 2012;6:10355–65.Google Scholar
[188]
Radke A, Gissibl T, Klotzbücher T, Braun PV, Giessen H. Three-dimensional bichiral plasmonic crystals fabricated by direct laser writing and electroless silver plating. Adv Mater 2011;23:3018–21.Google Scholar
[189]
Hentschel M, Schäferling M, Metzger B, Giessen H. Plasmonic diastereomers: adding up chiral centers. Nano Lett 2013;13:600–6.Google Scholar
[190]
Shen X, Asenjo-Garcia A, Liu Q, Jiang Q, García de Abajo FJ, Liu N, Ding B. 3D plasmonic chiral tetramers assembled by DNA origami. Nano Lett., submitted for publication.Google Scholar
[191]
Decker M, Klein MW, Wegener M, Linden S. Circular dichroism of planar chiral magnetic metamaterials. Opt Lett 2007;32:856–8.Google Scholar
[192]
Schäferling M, Dregely D, Hentschel M, Giessen H. Tailoring enhanced optical chirality: design principles for chiral plasmonic nanostructures. Phys Rev X 2012;2:031010.Google Scholar
[193]
Hentschel M, Schäferling M, Weiss T, Liu N, Giessen H. Three-dimensional chiral plasmonic oligomers. Nano Lett 2012;12:2542–7.Google Scholar
[194]
Gansel JK, Thiel M, Rill MS, Decker M, Bade K, Saile V, von Freymann G, Linden S, Wegener M. Gold helix photonic metamaterial as broadband circular polarizer. Science 2009;325:1513–5.Google Scholar
[195]
Yannopapas V. Negative index of refraction in artificial chiral materials. J Phys Condens Matter 2006;18:6883–90.Google Scholar
[196]
Müller J, Sönnichsen C, von Poschinger H, von Plessen G, Klar TA, Feldmann J. Electrically controlled light scattering with single metal nanoparticles. Appl Phys Lett 2002; 81:171–3.Google Scholar
[197]
Large N, Abb M, Aizpurua J, Muskens OL. Photoconductively loaded plasmonic nanoantenna as building block for ultracompact optical switches. Nano Lett 2010;10:1741–6.Google Scholar
[198]
Campione S, Albani M, Capolino F. Complex modes and near-zero permittivity in 3D arrays of plasmonic nanoshells: loss compensation using gain. Opt Mater Express 2011;1:1077–89.Google Scholar
[199]
De Luca A, Grzelczak MP, Pastoriza-Santos I, Liz-Marzán LM, La Deda M, Striccoli M, Strangi G. Dispersed and encapsulated gain medium in plasmonic nanoparticles: a multipronged approach to mitigate optical losses. ACS Nano 2011;5:5823–9.Google Scholar
[200]
Noginov MA, Zhu G, Bahoura M, Adegoke J, Small CE, Ritzo BA, Drachev VP, Shalaev VM. Enhancement of surface plasmons in an Ag aggregate by optical gain in a dielectric medium. Opt Lett 2006;31:3022–4.Google Scholar
[201]
Gordon JA, Ziolkowski RW. The design and simulated performance of a coated nano-particle laser. Opt Express 2007;15:2622–53.Google Scholar
[202]
Gordon JA, Ziolkowski RW. CNP optical metamaterials. Opt Express 2008;16:6692–716.Google Scholar
[203]
Zheludev NI, Prosvirnin SL, Papasimakis N, Fedotov VA. Lasing spaser. Nature Photon 2008;2:351–4.Google Scholar
[204]
Noginov MA, Zhu G, Belgrave AM, Bakker R, Shalaev VM, Narimanov EE, Stout S, Herz E, Suteewong T, Wiesner U. Demonstration of a spaser-based nanolaser. Nature 2009;460:1110–2.Google Scholar
[205]
Wuestner S, Pusch A, Tsakmakidis KL, Hamm JM, Hess O. Overcoming losses with gain in a negative refractive index metamaterial. Phys Rev Lett 2010;105:127401.Google Scholar
[206]
Fang A, Koschny T, Wegener M, Soukoulis CM. Self-consistent calculation of metamaterials with gain. Phys Rev B 2009;79:241104.Google Scholar
[207]
Huang Z, Koschny T, Soukoulis CM. Theory of pump-probe experiments of metallic metamaterials coupled to a gain medium. Phys Rev Lett 2012;108:187402.Google Scholar
[208]
Silveirinha MG, Alù A, Edwards B, Engheta N. Overview of theory and applications of epsilon-near-zero materials. Chicago, IL: URSI General Assembly; 2008.Google Scholar
[209]
Alù A, Silveirinha MG, Salandrino A, Engheta N. Epsilon-near-zero metamaterials and electromagnetic sources: tailoring the radiation. Phys Rev B 2007;75:155410.Google Scholar
[210]
Silveirinha MG, Engheta N. Tunneling of electromagnetic energy through subwavelength channels and bends using e-near-zero materials. Phys Rev Lett 2006;97:157403.Google Scholar
[211]
Pendry JB. Negative refraction makes a perfect lens. Phys Rev Lett 2000;85:3966–9.Google Scholar
[212]
Paul T, Rockstuhl C, Menzel C, Lederer F. Anomalous refraction, diffraction and imaging in metamaterials. Phys Rev B 2009;79:115430.Google Scholar
[213]
Paul T, Menzel C, Rockstuhl C, Lederer F. Advanced optical metamaterials. Adv Mater 2010;22:2354–7.Google Scholar
[214]
Maslovski S, Tretyakov S, Alitalo P. Near-field enhancement and imaging in double planar polariton-resonant structures. J Appl Phys 2004;96:1293–300.Google Scholar
[215]
Alitalo P, Simovski C, Viitanen A, Tretyakov S. Near-field enhancement and subwavelength imaging in the optical region using a pair of two-dimensional arrays of metal nanospheres. Phys Rev B 2006;74:235425.Google Scholar
[216]
Sönnichsen C, Reinhard BM, Liphardt J, Alivisatos AP. A molecular ruler based on plasmon coupling of single gold and silver nanoparticles. Nature Biotech 2005;23: 741–5.Google Scholar
[217]
Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP. Biosensing with plasmonic nanosensors. Nature Mater 2008; 7:442–53.Google Scholar
[218]
Hering K, Cialla D, Ackermann K, Dörfer T, Möller R, Schneidewind H, Mattheis R, Fritzsche W, Rösch P, Popp J. SERS: a versatile tool in chemical and biochemical diagnostics. Analytical and Bioanalytical Chemistry 2008;390:113–24.Google Scholar
[219]
Derkacs D, Lim SH, Matheu P, Mar W, Yu ET. Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles. Appl Phys Lett 2006;89:093103.Google Scholar
[220]
Zijlstra P, Chon JWM, Gu M. Five-dimensional optical recording mediated by surface plasmons in gold nanorods. Nature 2009;459:410–3.Google Scholar
[221]
Kwon MK, Kim JY, Kim BH, Park IK, Cho CY, Byeon CC, Park SJ. Surface-Plasmon-Enhanced Light-Emitting Diodes. Adv Mater 2008;20:1253–7.Google Scholar
[222]
Liu N, Guo H, Fu L, Kaiser S, Schweizer H, Giessen H. Three-dimensional photonic metamaterials at optical frequencies. Nature Mater 2008;7:31–7.Google Scholar
[223]
Kern J, Großmann S, Tarakina NV, Häckel T, Emmerling M, Kamp M, Huang J-S, Biagioni P, Prangsma JC, Hecht B. Atomic-scale confinement of resonant optical fields. Nano Lett 2012;12:5504–9.Google Scholar