[1]
Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP. Biosensing with plasmonic nanosensors. Nat Mater 2008;7:442–53.Google Scholar
[2]
Ymeti A, Greve J, Lambeck PV, Wink T, van Hovell S, Beumer TAM, Wijn RR, Heideman RG, Subramaniam V, Kanger J S. Fast, ultrasensitive virus detection using a young interferometer sensor. Nano Lett 2007;7:394–7.Google Scholar
[3]
Vollmer F, Arnold S, Keng D. Single virus detection from the reactive shift of a whispering-gallery mode. Proc Natl Acad Sci USA 2008;105:20701–4.Google Scholar
[4]
Naik AK, Hanay MS, Hiebert WK, Feng XL, Roukes ML. Towards single-molecule nanomechanical mass spectrometry. Nat Nanotechnol 2009;4:445–50.Google Scholar
[5]
Patolsky F, Zheng GF, Hayden O, Lakadamyali M, Zhuang XW, Lieber CM. Electrical detection of single viruses. Proc Natl Acad Sci USA 2004;101:14017–22.Google Scholar
[6]
Arlett JL, Myers EB, Roukes ML. Comparative advantages of mechanical biosensors. Nat Nanotechnol 2011;6:203–15.Google Scholar
[7]
Waggoner PS, Craighead HG. Micro- and nanomechanical sensors for environmental, chemical, and biological detection. Lab Chip 2007;7:1238–55.Google Scholar
[8]
Patolsky F, Zheng G, Lieber CM. Nanowire sensors for medicine and the life sciences. Nanomedicine 2006;1:51–65.Google Scholar
[9]
Li J, Lu YJ, Ye Q, Cinke M, Han J, Meyyappan M. Carbon nanotube sensors for gas and organic vapor detection. Nano Lett 2003;3:929–33.Google Scholar
[10]
Baaske M, Vollmer F. Optical resonator biosensors: molecular diagnostic and nanoparticle detection on an integrated platform. ChemPhysChem 2012;13:427–36.Google Scholar
[11]
Wilson K, Vollmer F. Whispering Gallery Mode Resonator Biosensors. Springer Verlag: Dordrecht, Netharlands; 2012.Google Scholar
[12]
Arnold S, Khoshsima M, Teraoka I, Holler S, Vollmer F. Shift of whispering-gallery modes in microspheres by protein adsorption. Opt Lett 2003;28:272–4.Google Scholar
[13]
Vollmer F, Braun D, Libchaber A, Khoshsima M, Teraoka I, Arnold S. Protein detection by optical shift of a resonant microcavity. Appl Phys Lett 2002;80:4057–9.Google Scholar
[14]
Burg TP, Godin M, Knudsen SM, Shen W, Carlson G, Foster JS, Babcock K, Manalis SR. Weighing of biomolecules, single cells and single nanoparticles in fluid. Nature 2007;446:1066–9.Google Scholar
[15]
Patolsky F, Zheng GF, Lieber CM. Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species. Nat Protoc 2006;1:1711–24.Google Scholar
[16]
Hunt HK, Soteropulos C, Armani AM. Bioconjugation strategies for microtoroidal optical resonators. Sensors 2010;10:9317–36.Google Scholar
[17]
Zijlstra P, Paulo PMR, Orrit M. Optical detection of single nonabsorbing molecules using the surface plasmon resonance of a gold nanorod. Nat Nanotechnol 2012;7:379–82.Google Scholar
[18]
Ament I, Prasad J, Henkel A, Schmachtel S, Sonnichsen C. Single unlabeled protein detection on individual plasmonic nanoparticles. Nano Lett 2012;12:1092–5.Google Scholar
[19]
Curreli M, Zhang R, Ishikawa FN, Chang HK, Cote RJ, Zhou C, Thompson ME. Real-time, label-free detection of biological entities using nanowire-based FETs. IEEE Trans Nanotechnol 2008;7:651–67.Google Scholar
[20]
Wang SP, Shan XN, Patel U, Huang XP, Lu J, Li JH, Tao NJ. Label-free imaging, detection, and mass measurement of single viruses by surface plasmon resonance. Proc Natl Acad Sci USA 2010;107:16028–32.Google Scholar
[21]
Ilic B, Yang Y, Craighead HG. Virus detection using nanoelectromechanical devices. Appl Phys Lett 2004;85:2604–6.Google Scholar
[22]
Fan XD, White IM. Optofluidic microsystems for chemical and biological analysis. Nat Photonics 2011;5:591–7.Google Scholar
[23]
Qavi AJ, Washburn AL, Byeon JY, Bailey RC. Label-free technologies for quantitative multiparameter biological analysis. Anal Bioanal Chem 2009;394:121–35.Google Scholar
[24]
Iqbal M, Gleeson MA, Spaugh B, Tybor F, Gunn WG, Hochberg M, Baehr-Jones T, Bailey RC, Gunn LC. Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation. IEEE J Sel Top Quantum Electron 2010;16:654–61.Google Scholar
[25]
Roy S, Prasad M, Topolancik J, Vollmer F. All-optical switching with bacteriorhodopsin protein coated microcavities and its application to low power computing circuits. J Appl Phys 2010;107:053115-1–9.Google Scholar
[26]
Guerra DN, Bulsara AR, Ditto WL, Sinha S, Murali K, Mohanty P. A noise-assisted reprogrammable nanomechanical logic gate. Nano Lett 2010;10:1168–71.Google Scholar
[27]
Huang Y, Duan XF, Cui Y, Lauhon LJ, Kim KH, Lieber CM. Logic gates and computation from assembled nanowire building blocks. Science 2001;294:1313–7.Google Scholar
[28]
Lukosz W. Principles and sensitivities of integrated optical and surface-plasmon sensors for direct affinity sensing and immunosensing. Biosens Bioelectron 1991;6:215–25.Google Scholar
[29]
Yang AHJ, Erickson D. Optofluidic ring resonator switch for optical particle transport. Lab Chip 2010;10:769–74.Google Scholar
[30]
Zhu JG, Ozdemir SK, Xiao YF, Li L, He LN, Chen DR, Yang L. On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator Nat Photonics 2010;4:46–9.Google Scholar
[31]
Lin SY, Crozier KB. Planar silicon microrings as wavelengthmultiplexed optical traps for storing and sensing particles. Lab Chip 2011;11:4047–51.Google Scholar
[32]
Arnold S, Keng D, Shopova SI, Holler S, Zurawsky W, Vollmer F. Whispering gallery mode carousel – a photonic mechanism for enhanced nanoparticle detection in biosensing. Opt Express 2009;17:6230–8.Google Scholar
[33]
Gorodetsky ML, Savchenkov AA, Ilchenko VS. Ultimate Q of optical microsphere resonators. Opt Lett 1996;21:453–5.Google Scholar
[34]
Collot L, Lefevreseguin V, Brune M, Raimond JM, Haroche S. Very high-Q whispering-gallery mode resonances observed on fused-silica microspheres. Europhys Lett 1993;23:327–34.Google Scholar
[35]
Braginsky VB, Mitrofanov VP, Panov VI. Systems with Small Dissipation. University of Chicago Press: Chicago, USA, 1985.Google Scholar
[36]
Yoshie T, Tang LL, Su SY. Optical microcavity: sensing down to single molecules and atoms. Sensors 2011;11:1972–91.Google Scholar
[37]
Chiasera A, Dumeige Y, Feron P, Ferrari M, Jestin Y, Conti GN, Pelli S, Soria S, Righini GC. Spherical whisperinggallery-mode microresonators. Laser Photon Rev 2010;4: 457–82.Google Scholar
[38]
Vollmer F, Arnold S. Whispering-gallery-mode biosensing: label-free detection down to single molecules. Nature Meth 2008;5:591–6.Google Scholar
[39]
Vahala KJ. Optical microcavities. Nature 2003;424:839–46.Google Scholar
[40]
Barrios CA. Integrated microring resonator sensor arrays for labs-on-chips. Anal Bioanal Chem 2012;403:1467–75.Google Scholar
[41]
Zhu H, White IM, Suter JD, Dale PS, Fan X. Analysis of biomolecule detection with optofluidic ring resonator sensors. Opt Express 2007;15:9139–46.Google Scholar
[42]
Gohring JT, Dale PS, Fan XD. Detection of HER2 breast cancer biomarker using the opto-fluidic ring resonator biosensor. Sens Actuator B-Chem 2010;146:226–30.Google Scholar
[43]
Knight JC, Cheung G, Jacques F, Birks TA. Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper. Opt Lett 1997;22:1129–31.Google Scholar
[44]
Laine JP, Little BE, Haus HA. Etch-eroded fiber coupler for whispering-gallery-mode excitation in high-Q silica microspheres. IEEE Photonics Technol Lett 1999;11:1429–30.Google Scholar
[45]
Cai M, Painter O, Vahala KJ. Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system. Phys Rev Lett 2000;85:74–7.Google Scholar
[46]
Warken F, Rauschenbeutel A, Bartholomaus T. Fiber pulling profits from precise positioning. Photon Spect 2008;42: 73–5.Google Scholar
[47]
Vanier F, La Mela C, Hayat A, Peter YA. Intrinsic quality factor determination in whispering gallery mode microcavities using a single Stokes parameters measurement. Opt Express 2011;19:23544–53.Google Scholar
[48]
Lutti J, Langbein W, Borri P. A monolithic optical sensor based on whispering-gallery modes in polystyrene microspheres. Appl Phys Lett 2008;93:151103-1–4.Google Scholar
[49]
Huckabay HA, Dunn RC. Whispering gallery mode imaging for the multiplexed detection of biomarkers. Sens Actuator B-Chem 2011;160:1262–7.Google Scholar
[50]
De Vos K, Bartolozzi I, Schacht E, Bienstman P, Baets R. Silicon-on-Insulator microring resonator for sensitive and labelfree biosensing. Opt Express 2007;15:7610–5.Google Scholar
[51]
Washburn AL, Luchansky MS, Bowman AL, Bailey RC. Quantitative, label-free detection of five protein biomarkers using multiplexed arrays of silicon photonic microring resonators. Anal Chem 2010;82:69–72.Google Scholar
[52]
Delezoide C, Salsac M, Lautru J, Leh H, Nogues C, Zyss J, Buckle M, Ledoux-Rak I, Nguyen CT. Vertically coupled polymer microracetrack resonators for label-free biochemical sensors. IEEE Photonics Technol Lett 2012;24:270–2.Google Scholar
[53]
Ksendzov A, Lin Y. Integrated optics ring-resonator sensors for protein detection. Opt Lett 2005;30:3344–6.Google Scholar
[54]
Washburn AL, Bailey RC. Photonics-on-a-chip: recent advances in integrated waveguides as enabling detection elements for real-world, lab-on-a-chip biosensing applications. Analyst 2011;136:227–36.Google Scholar
[55]
Jokerst N, Royal M, Palit S, Luan L, Dhar S, Tyler T. Chip scale integrated microresonator sensing systems. J Biophotonics 2009;2:212–26.Google Scholar
[56]
White IM, Oveys H, Fan X. Liquid-core optical ring-resonator sensors. Opt Lett 2006;31:1319–21.Google Scholar
[57]
Vollmer F, Arnold S, Braun D, Teraoka I, Libchaber A. Multiplexed DNA quanti. cation by spectroscopic shift of two microsphere cavities. Biophys J 2003;85:1974–9.Google Scholar
[58]
Swaim JD, Knittel J, Bowen WP. Detection limits in whispering gallery biosensors with plasmonic enhancement. Appl Phys Lett 2011;99:243109–3.Google Scholar
[59]
Braginsky VB, Gorodetsky ML, Ilchenko VS. Quality-factor and nonlinear properties of optical whispering-gallery modes. Phys Lett A 1989;137:393–7.Google Scholar
[60]
Weiss DS, Sandoghdar V, Hare J, Lefevreseguin V, Raimond JM, Haroche S. Splitting of High-Q mie modes induced by light backscattering in silica microspheres. Opt Lett 1995;20:1835–7.Google Scholar
[61]
Gorodetsky ML, Pryamikov AD, Ilchenko VS. Rayleigh scattering in high-Q microspheres. J Opt Soc Am B-Opt Phys 2000;17:1051–7.Google Scholar
[62]
Mazzei A, Goetzinger S, Menezes LD, Zumofen G, Benson O, Sandoghdar V. Controlled coupling of counterpropagating whispering-gallery modes by a single Rayleigh scatterer: a classical problem in a quantum optical light. Phys Rev Lett 2007;99:173603-1–4.Google Scholar
[63]
Borselli M, Johnson TJ, Painter O. Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment. Opt Express 2005;13:1515–30.Google Scholar
[64]
Kippenberg TJ, Tchebotareva AL, Kalkman J, Polman A, Vahala KJ. Purcell-factor-enhanced scattering from Si nanocrystals in an optical microcavity. Phys Rev Lett 2009;103:027406-1–4.Google Scholar
[65]
Zhu JG, Ozdemir SK, He L, Chen DR, Yang L. Single virus and nanoparticle size spectrometry by whispering-gallery-mode microcavities. Opt Express 2011;19:16195–206.Google Scholar
[66]
He L, Ozdemir SK, Zhu J, Kim W, Yang L. Detecting single viruses and nanoparticles using whispering gallery microlasers. Nat Nano 2011;6:428–32.Google Scholar
[67]
Lu T, Lee H, Chen T, Herchak S, Kim JH, Fraser SE, Flagan RC, Vahala K. High sensitivity nanoparticle detection using optical microcavities. Proc Natl Acad Sci USA 2011;108:5976–9.Google Scholar
[68]
Ozdemir SK, Zhu JG, He LN, Yang L. Estimation of Purcell factor from mode-splitting spectra in an optical microcavity. Phys Rev A 2011;83:033817-1–5.Google Scholar
[69]
Knittel J, McRae TG, Lee KH, Bowen WP. Interferometric detection of mode splitting for whispering gallery mode biosensors. Appl Phys Lett 2010;97:123704-1–3.Google Scholar
[70]
He LN, Ozdemir SK, Zhu JG, Yang L. Ultrasensitive detection of mode splitting in active optical microcavities. Phys Rev A 2010;82:053810-1–4.Google Scholar
[71]
Kim W, Ozdemir SK, Zhu JG, He LA, Yang L. Demonstration of mode splitting in an optical microcavity in aqueous environment. Appl Phys Lett 2010;97:071111-1–3.Google Scholar
[72]
Kim W, Ozdemir SK, Zhu JG, Yang L. Observation and characterization of mode splitting in microsphere resonators in aquatic environment. Appl Phys Lett 2011;98:141106-1–3.Google Scholar
[73]
Teraoka I. Resonance shifts of transverse-electric whispering gallery modes in a spheroidal resonator. Appl Optics 2012;51:1101–8.Google Scholar
[74]
Teraoka I, Arnold S, Vollmer F. Perturbation approach to resonance shifts of whispering-gallery modes in a dielectric microsphere as a probe of a surrounding medium. J Opt Soc Am B-Opt Phys 2003;20:1937–46.Google Scholar
[75]
Teraoka I, Arnold S. Enhancing the sensitivity of a whisperinggallery mode microsphere sensor by a high-refractive-index surface layer. J Opt Soc Am B-Opt Phys 2006;23:1434–41.Google Scholar
[76]
Teraoka I, Arnold S. Theory of resonance shifts in TE and TM whispering gallery modes by nonradial perturbations for sensing applications. J Opt Soc Am B-Opt Phys 2006;23:1381–9.Google Scholar
[77]
Teraoka I, Arnold S. Resonance shifts of counterpropagating whispering-gallery modes: degenerate perturbation theory and application to resonator sensors with axial symmetry. J Opt Soc Am B 2009;26:1321–9.Google Scholar
[78]
Yi X, Xiao YF, Liu YC, Li BB, Chen YL, Li Y, Gong QH. Multiple-Rayleigh-scatterer-induced mode splitting in a high-Q whispering-gallery-mode microresonator. Phys Rev A 2011;83:023803-1–8.Google Scholar
[79]
Yi X, Xiao YF, Li Y, Liu YC, Li BB, Liu ZP, Gong QH. Polarization-dependent detection of cylinder nanoparticles with mode splitting in a high-Q whispering-gallery microresonator. Appl Phys Lett 2010;97:203705-1–3.Google Scholar
[80]
Zhu HY, White IM, Suter JD, Dale PS, Fan XD. Analysis of biomolecule detection with optofluidic ring resonator sensors. Opt Express 2007;15:9139–46.Google Scholar
[81]
Lopez-Yglesias X, Gamba JM, Flagan RC. The physics of extreme sensitivity in whispering gallery mode optical biosensors. J Appl Phys 2012;111:084701-1–11.Google Scholar
[82]
Luchansky MS, Bailey RC. Silicon photonic microring resonators for quantitative cytokine detection and T-cell secretion analysis. Anal Chem 2010;82:1975–81.Google Scholar
[83]
Luchansky MS, Bailey RC. Rapid, multiparameter profiling of cellular secretion using silicon photonic microring resonator arrays. J Am Chem Soc 2011;133:20500–6.Google Scholar
[84]
Luchansky MS, Washburn AL, McClellan MS, Bailey RC. Sensitive on-chip detection of a protein biomarker in human serum and plasma over an extended dynamic range using silicon photonic microring resonators and sub-micron beads. Lab Chip 2011;11:2042–4.Google Scholar
[85]
Washburn AL, Gunn LC, Bailey RC. Label-free quantitation of a cancer biomarker in complex media using silicon photonic microring resonators. Anal Chem 2009;81:9499–506.Google Scholar
[86]
Goddard JM, Erickson D. Bioconjugation techniques for microfluidic biosensors. Anal Bioanal Chem 2009;394:469–79.Google Scholar
[87]
Wilson KA, Finch CA, Anderson P, Vollmer F, Hickman JJ. Whispering gallery mode biosensor quantification of fibronectin adsorption kinetics onto alkylsilane monolayers and interpretation of resultant cellular response. Biomaterials 2012;33:225–36.Google Scholar
[88]
Qavi AJ, Bailey RC. Multiplexed detection and label-free quantitation of MicroRNAs using arrays of silicon photonic microring resonators. Angew Chem-Int Edit 2010;49:4608–11.Google Scholar
[89]
Qavi AJ, Mysz TM, Bailey RC. Isothermal discrimination of single-nucleotide polymorphisms via real-time kinetic desorption and label-free detection of DNA using silicon photonic microring resonator arrays. Anal Chem 2011;83:6827–33.Google Scholar
[90]
Lin S, Lee AS-Y, Lin C-C, Lee C-K. Determination of binding constant and stoichiometry for antibody-antigen interaction with surface plasmon resonance. Curr Proteomics 2006;3: 271–82.Google Scholar
[91]
Marty MT, Sloan CDK, Bailey RC, Sligar SG. Nonlinear analyte concentration gradients for one-step kinetic analysis employing optical microring resonators. Anal Chem 2012;84:5556–64.Google Scholar
[92]
De Vos K, Girones J, Claes T, De Koninck Y, Popelka S, Schacht E, Baets R, Bienstman P. Multiplexed antibody detection with an array of silicon-on-insulator microring resonators. IEEE Photonics J 2009;1:225–35.Google Scholar
[93]
Nuhiji E, Mulvaney P. Detection of unlabeled oligonucleotide targets using whispering gallery modes in single, fluorescent microspheres. Small 2007;3:1408–14.Google Scholar
[94]
Suter JD, White IM, Zhu HY, Shi HD, Caldwell CW, Fan XD. Label-free quantitative DNA detection using the liquid core optical ring resonator. Biosens Bioelectron 2008;23:1003–9.Google Scholar
[95]
Washburn AL, Gomez J, Bailey RC. DNA-encoding to improve performance and allow parallel evaluation of the binding characteristics of multiple antibodies in a surface-bound immunoassay format. Anal Chem 2011;83:3572–80.Google Scholar
[96]
Qavi AJ, Kindt JT, Gleeson MA, Bailey RC. Anti-DNA:RNA antibodies and silicon photonic microring resonators: increased sensitivity for multiplexed microRNA detection. Anal Chem 2011;83:5949–56.Google Scholar
[97]
Zhu HY, Suter JD, White IM, Fan XD. Aptamer based microsphere biosensor for thrombin detection. Sensors 2006;6:785–95.Google Scholar
[98]
Cheema MI, Mehrabani S, Hayat AA, Peter YA, Armani AM, Kirk AG. Simultaneous measurement of quality factor and wavelength shift by phase shift microcavity ring down spectroscopy. Opt Express 2012;20:9090–8.Google Scholar
[99]
Zhu HY, White IM, Suter JD, Fan XD. Phage-based label-free biomolecule detection in an opto-fluidic ring resonator. Biosens Bioelectron 2008;24:461–6.Google Scholar
[100]
Suter JD, Howard DJ, Shi HD, Caldwell CW, Fan XD. Labelfree DNA methylation analysis using opto-fluidic ring resonators. Biosens Bioelectron 2010;26:1016–20.Google Scholar
[101]
Weller A, Liu FC, Dahint R, Himmelhaus M. Whispering gallery mode biosensors in the low-Q limit. Appl Phys B-Lasers Opt 2008;90:561–7.Google Scholar
[102]
Soteropulos CE, Hunt HK, Armani AM. Determination of binding kinetics using whispering gallery mode microcavities. Appl Phys Lett 2011;99:103703-1–3.Google Scholar
[103]
Xu DX, Densmore A, Delage A, Waldron P, McKinnon R, Janz S, Lapointe J, Lopinski G, Mischki T, Post E, Cheben P, Schmid JH. Folded cavity SOI microring sensors for high sensitivity and real time measurement of biomolecular binding. Opt Express 2008;16:15137–48.Google Scholar
[104]
Topolancik J, Vollmer F. Photoinduced transformations in bacteriorhodopsin membrane monitored with optical microcavities. Biophys J 2007;92:2223–9.Google Scholar
[105]
Scheler O, Kindt JT, Qavi AJ, Kaplinski L, Glynn B, Barry T, Kurg A, Bailey RC. Label-free, multiplexed detection of bacterial tmRNA using silicon photonic microring resonators. Biosens Bioelectron 2012;36:56–61.Google Scholar
[106]
Chakravarty S, Yi Z, Wei-Cheng L, Chen RT. Slow light engineering for high Q high sensitivity photonic crystal microcavity biosensors in silicon. Biosens Bioelectron 2012;38:170–6.Google Scholar
[107]
Armani AM, Kulkarni RP, Fraser SE, Flagan RC, Vahala KJ. Label-free, single-molecule detection with optical microcavities. Science 2007;317:783–7.Google Scholar
[108]
Dantham VR, Holler S, Kolchenko V, Wan Z, Arnold S. Taking whispering gallery-mode single virus detection and sizing to the limit. Appl Phys Lett 2012;101:043704-1–3.Google Scholar
[109]
Yang GM, White IM, Fan XD. An opto-fluidic ring resonator biosensor for the detection of organophosphorus pesticides. Sens Actuator B-Chem 2008;133:105–12.Google Scholar
[110]
Zhu HY, Dale PS, Caldwell CW, Fan XD. Rapid and labelfree detection of breast cancer biomarker CA15-3 in clinical human serum samples with optofluidic ring resonator sensors. Anal Chem 2009;81:9858–65.Google Scholar
[111]
Yalcin A, Popat KC, Aldridge JC, Desai TA, Hryniewicz J, Chbouki N, Little BE, King O, Van V, Chu S, Gill D, Anthes-Washburn M, Unlu MS. Optical sensing of biomolecules using microring resonators. IEEE J Sel Top Quantum Electron 2006;12:148–55.Google Scholar
[112]
Shi C, Mehrabani S, Armani AM. Leveraging bimodal kinetics to improve detection specificity. Opt Lett 2012;37: 1643–5.Google Scholar
[113]
Kirk JT, Fridley GE, Chamberlain JW, Christensen ED, Hochberg M, Ratner DM. Multiplexed inkjet functionalization of silicon photonic biosensors. Lab Chip 2011;11:1372–7.Google Scholar
[114]
Biggs BW, Hunt HK, Armani AM. Selective patterning of Si-based biosensor surfaces using isotropic silicon etchants. J Colloid Interf Sci 2012;369:477–81.Google Scholar
[115]
Mandal S, Goddard JM, Erickson D. A multiplexed optofluidic biomolecular sensor for low mass detection. Lab Chip 2009;9:2924–32.Google Scholar
[116]
Lee M, Fauchet PM. Two-dimensional silicon photonic crystal based biosensing platform for protein detection. Opt Express 2007;15:4530–5.Google Scholar
[117]
Hanumegowda NM, Stica CJ, Patel BC, White I, Fan XD. Refractometric sensors based on microsphere resonators. Appl Phys Lett 2005;87:201107-1–3.Google Scholar
[118]
Ren HC, Vollmer F, Arnold S, Libchaber A. High-Q microsphere biosensor – analysis for adsorption of rodlike bacteria. Opt Express 2007;15:17410–23.Google Scholar
[119]
Lutti J, Langbein W, Borri P. High Q optical resonances of polystyrene microspheres in water controlled by optical tweezers. Appl Phys Lett 2007;91:141116-1–3.Google Scholar
[120]
Ilchenko VS, Yao XS, Maleki L. Pigtailing the high-Q microsphere cavity: a simple fiber coupler for optical whisperinggallery modes. Opt Lett 1999;24:723–5.Google Scholar
[121]
Ilchenko VS, Matsko AB. Optical resonators with whisperinggallery modes – Part II: applications. IEEE J Sel Top Quantum Electron 2006;12:15–32.Google Scholar
[122]
Claes T, Molera JG, De Vos K, Schacht E, Baets R, Bienstman P. Label-Free Biosensing With a Slot-Waveguide-Based Ring Resonator in Silicon on Insulator. IEEE Photonics J 2009;1:197–204.Google Scholar
[123]
Ramachandran A, Wang S, Clarke J, Ja SJ, Goad D, Wald L, Flood EM, Knobbe E, Hryniewicz JV, Chu ST, Gill D, Chen W, King O, Little BE. A universal biosensing platform based on optical micro-ring resonators. Biosens Bioelectron 2008;23:939–44.Google Scholar
[124]
Chao CY, Fung W, Guo LJ. Polymer microring resonators for biochemical sensing applications. IEEE J Sel Top Quantum Electron 2006;12:134–42.Google Scholar
[125]
Nitkowski A, Baeumner A, Lipson M. On-chip spectrophotometry for bioanalysis using microring resonators. Biomed Opt Express 2011;2:271–7.Google Scholar
[126]
Francois A, Himmelhaus M. Whispering gallery mode biosensor operated in the stimulated emission regime. Appl Phys Lett 2009;94:031101-1–3.Google Scholar
[127]
Himmelhaus M, Krishnamoorthy S, Francois A. Optical sensors based on whispering gallery modes in fluorescent microbeads: response to specific interactions. Sensors 2010;10:6257–74.Google Scholar
[128]
Himmelhaus M, Francois A. In-vitro sensing of biomechanical forces in live cells by a whispering gallery mode biosensor. Biosens Bioelectron 2009;25:418–27.Google Scholar
[129]
Yang J, Guo LJ. Optical sensors based on active microcavities. IEEE J Sel Top Quantum Electron 2006;12:143–7.Google Scholar
[130]
Boyd RW, Heebner JE. Sensitive disk resonator photonic biosensor. Appl Optics 2001;40:5742–7.Google Scholar
[131]
Schweinsberg A, Hocde S, Lepeshkin NN, Boyd RW, Chase C, Fajardo JE. An environmental sensor based on an integrated optical whispering gallery mode disk resonator. Sens Actuator B-Chem 2007;123:727–32.Google Scholar
[132]
Pollinger M, O’Shea D, Warken F, Rauschenbeutel A. Ultrahigh-Q tunable whispering-gallery-mode microresonator. Phys Rev Lett 2009;103:053901-1–4.Google Scholar
[133]
Smith EJ, Schulze S, Kiravittaya S, Mei YF, Sanchez S, Schmidt OG. Lab-in-a-Tube: detection of individual mouse cells for analysis in flexible split-wall microtube resonator sensors. Nano Lett 2011;11:4037–42.Google Scholar
[134]
Harazim SM, Quinones VAB, Kiravittaya S, Sanchez S, Schmidt OG. Lab-in-a-tube: on-chip integration of glass optofluidic ring resonators for label-free sensing applications. Lab Chip 2012;12:2649–55.Google Scholar
[135]
Block ID, Chan LL, Cunningham BT. Photonic crystal optical biosensor incorporating structured low-index porous dielectric. Sens Actuator B-Chem 2006;120:187–93.Google Scholar
[136]
Qimin Q, Frank V, Ian BB, Parag BD, Ian F, Sindy T, Rob I, Marko L. Ultrasensitive On-Chip Photonic Crystal Nanobeam Sensor using Optical Bistability. In; 2011: Optical Society of America; 2011. p. QThH6.Google Scholar
[137]
Erickson D, Mandal S, Yang AHJ, Cordovez B. Nanobiosensors: optofluidic, electrical and mechanical approaches to biomolecular detection at the nanoscale. Microfluid Nanofluid 2008;4:33–52.Google Scholar
[138]
Bergstein DA, Ozkumur E, Wu AC, Yalcin A, Colson JR, Needham JW, Irani RJ, Gershoni JM, Goldberg BB, DeLisi C, Ruane MF, Unlu MS. Resonant cavity imaging: a means toward high-throughput label-free protein detection. IEEE J Sel Top Quantum Electron 2008;14:131–9.Google Scholar
[139]
Trupke M, Hinds EA, Eriksson S, Curtis EA, Moktadir Z, Kukharenka E, Kraft M. Microfabricated high-finesse optical cavity with open access and small volume. Appl Phys Lett 2005;87.Google Scholar
[140]
Vollmer F, Fischer P. Ring-resonator-based frequency-domain optical activity measurements of a chiral liquid. Opt Lett 2006;31:453–5.Google Scholar
[141]
Henze R, Seifert T, Ward J, Benson O. Tuning whispering gallery modes using internal aerostatic pressure. Opt Lett 2011;36:4536–8.Google Scholar
[142]
Sumetsky M, Dulashko Y, Windeler RS. Optical microbubble resonator. Opt Lett 2010;35:898–900.Google Scholar
[143]
Watkins A, Ward J, Wu YQ, Chormaic SN. Single-input spherical microbubble resonator. Opt Lett 2011;36:2113–5.Google Scholar
[144]
Scheuer J, Sumetsky M. Optical-fiber microcoil waveguides and resonators and their applications for interferometry and sensing. Laser Photon Rev 2011;5:465–78.Google Scholar
[145]
Sumetsky M. Optical fiber microcoil resonator. Opt Express 2004;12:2303–16.Google Scholar
[146]
Xu F, Horak P, Brambilla G. Optical microfiber coil resonator refractometric sensor. Opt Express 2007;15:7888–93.Google Scholar
[147]
Santiago-Cordoba MA, Boriskina SV, Vollmer F, Demirel MC. Nanoparticle-based protein detection by optical shift of a resonant microcavity. Appl Phys Lett 2011;99:073701-1–4.Google Scholar
[148]
Santiago-Cordoba MA, Cetinkaya M, Boriskina SV, Vollmer F, Demirel MC. Ultrasensitive detection of a protein by optical trapping in a photonic-plasmonic microcavity. J Biophotonics 2012;5:629–38.Google Scholar
[149]
Shopova SI, Rajmangal R, Holler S, Arnold S. Plasmonic enhancement of a whispering-gallery-mode biosensor for single nanoparticle detection. Appl Phys Lett 2011;98.Google Scholar
[150]
Richtmyer RD. Dielectric resonators. J Appl Phys 1939;10:391–8.Google Scholar
[151]
Lan Y, Kerry V. Gain functionalization of silica microresonators. Opt Lett 2003;28:592–4.Google Scholar
[152]
Gaathon O, Culic-Viskota J, Mihnev M, Teraoka I, Arnold S. Enhancing sensitivity of a whispering gallery mode biosensor by subwavelength confinement. Appl Phys Lett 2006;89:223901-1–3.Google Scholar
[153]
Armani AM, Vahala KJ. Heavy water detection using ultrahigh-Q microcavities. Opt Lett 2006;31:1896–8.Google Scholar
[154]
Nussenzveig HM. Diffraction Effects in Semiclassical Scattering. http://www.amazon.de/Diffraction-Semiclass-Montroll-Memorial-Mathematical/dp/0521025877/ref=sr_1_cc_1?s=aps&ie=UTF8&qid=1352643084&sr=1-1-catcorr. NY, USA: Cambridge University Press; 1992.Google Scholar
[155]
Arnold S. Microspheres, photonic atoms and the physics of nothing. Am Sci 2001;89:414–20.Google Scholar
[156]
Noto M, Keng D, Teraoka I, Arnold S. Detection of protein orientation on the silica microsphere surface using transverse electric/transverse magnetic whispering gallery modes. Biophys J 2007;92:4466–72.Google Scholar
[157]
Noto M, Vollmer F, Keng D, Teraoka I, Arnold S. Nanolayer characterization through wavelength multiplexing of a microsphere resonator. Opt Lett 2005;30:510–2.Google Scholar
[158]
Rubin JT, Deych LI. Optical forces due to spherical microresonators and their manifestation in optically induced orbital motion of nanoparticles. Phys Rev A 2011;84: 023844-1–8.Google Scholar
[159]
Wiersig J. Structure of whispering-gallery modes in optical microdisks perturbed by nanoparticles. Phys Rev A 2011;84:063828-1–9.Google Scholar
[160]
Boriskina SV, Dal Negro L. Self-referenced photonic molecule bio(chemical)sensor. Opt Lett 2010;35:2496–8.Google Scholar
[161]
Arnold S, Shopova SI, Holler S. Whispering gallery mode biosensor?for label-free detection of single molecules: thermooptic vs. reactive mechanism. Opt Express 2010;18:281–7.Google Scholar
[162]
Hoon J, Shinyoung L, Gun Yong S, Shin JH. Design and fabrication of Tb 3+-doped silicon oxy-nitride microdisk for biosensor applications. IEEE Photonics Technol Lett 2011;23:88–90.Google Scholar
[163]
Lee S, Eom SC, Chang JS, Huh C, Sung GY, Shin JH. Labelfree optical biosensing using a horizontal air-slot SiN(x) microdisk resonator. Opt Express 2010;18:20638–44.Google Scholar
[164]
Ostrowski M, Pignalosa P, Smith H, Yi Y. Higher-order optical resonance node detection of integrated disk microresonator. Opt Lett 2011;36:3042–4.Google Scholar
[165]
Linghua W, Ren J, Xiuyou H, Claes T, Xigao J, Bienstman P, Baets R, Mingshan Z, Morthier G. A label-free optical biosensor built on a low-cost polymer platform. IEEE Photonics J 2012;4:920–30:19106-1–3.Google Scholar
[166]
Su BQ, Wang CX, Kan Q, Chen HD. Compact silicon-oninsulator dual-microring resonator optimized for sensing. J Lightwave Technol 2011;29:1535–41.Google Scholar
[167]
Lei J, Mingyu L, Jian-Jun H. Highly-sensitive silicon-on-insulator sensor based on two cascaded micro-ring resonators with vernier effect. Opt Commun 2011;284:156–9.Google Scholar
[168]
Xu DX, Vachon M, Densmore A, Ma R, Delage A, Janz S, Lapointe J, Li Y, Lopinski G, Zhang D, Liu QY, Cheben P, Schmid JH. Label-free biosensor array based on silicon-oninsulator ring resonators addressed using a WDM approach. Opt Lett 2010;35:2771–3.Google Scholar
[169]
Mancuso M, Goddard JM, Erickson D. Nanoporous polymer ring resonators for biosensing. Opt Express 2012;20:245–55.Google Scholar
[170]
Cho SY, Jokerst NM. A polymer microdisk photonic sensor integrated onto silicon. IEEE Photonics Technol Lett 2006;18:2096–8.Google Scholar
[171]
Junfeng S, Xianshu L, Xiaoguang T, MiKyoung P, Kee JS, Huijuan Z, Mingbin Y, Guo-Qiang L, Dim-Lee K. Electrical tracing-assisted dual-microring label-free optical bio/chemical sensors. Opt Express 2011;20:4189–97.Google Scholar
[172]
Jin L, Li MY, He JJ. Highly-sensitive silicon-on-insulator sensor based on two cascaded micro-ring resonators with vernier effect. Opt Commun 2011;284:156–9.Google Scholar
[173]
Claes T, Bogaerts W, Bienstman P. Experimental characterization of a silicon photonic biosensor consisting of two cascaded ring resonators based on the Vernier-effect and introduction of a curve fitting method for an improved detection limit. Opt Express 2010;18:22747–61.Google Scholar
[174]
Carlborg CF, Gylfason KB, Kazmierczak A, Dortu F, Polo MJB, Catala AM, Kresbach GM, Sohlstrom H, Moh T, Vivien L, Popplewell J, Ronan G, Barrios CA, Stemme G, van der Wijngaart W. A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labson-chips. Lab Chip 2010;10:281–90.Google Scholar
[175]
Khorasaninejad M, Clarke N, Anantram MP, Saini SS. Optical bio-chemical sensors on SNOW ring resonators. Opt Express 2011;19:17575–84.Google Scholar
[176]
White IM, Fan XD. On the performance quantification of resonant refractive index sensors. Opt Express 2008;16:1020–8.Google Scholar
[177]
Sun YZ, Fan XD. Optical ring resonators for biochemical and chemical sensing. Anal Bioanal Chem 2011;399:205–11.Google Scholar
[178]
Sumetsky M, Windeler RS, Dulashko Y, Fan X. Optical liquid ring resonator sensor. Opt Express 2007;15:14376–81.Google Scholar
[179]
Zhu HY, White IM, Suter JD, Zourob M, Fan XD. Opto-fluidic micro-ring resonator for sensitive label-free viral detection. Analyst 2008;133:356–60.Google Scholar
[180]
Gohring JT, Fan XD. Label free detection of CD4+ and CD8+T cells using the optofluidic ring resonator. Sensors 2010;10:5798–808.Google Scholar
[181]
Lin N, Jiang L, Wang SM, Xiao H, Lu YF, Tsai HL. Design and optimization of liquid core optical ring resonator for refractive index sensing. Appl Optics 2011;50:3615–21.Google Scholar
[182]
Manchee CPK, Veinot JGC, Meldrum A. Theory and demonstration of fluorescence-based refractometric sensing in glass micro-capillaries with a silicon nanocrystal-embedded film. 2011 13th International Conference on Transparent Optical Networks 2011:pp. 4.Google Scholar
[183]
White IM, Oveys H, Fan X, Smith TL, Zhang JY. Integrated multiplexed biosensors based on liquid core optical ring resonators and antiresonant reflecting optical waveguides. Appl Phys Lett 2006;89.Google Scholar
[184]
Zhu HY, White IM, Suter JD, Zourob M, Fan XD. Integrated refractive index optical ring resonator detector for capillary electrophoresis. Anal Chem 2007;79:930–7.Google Scholar
[185]
Hao L, Yunbo G, Yuze S, Reddy K, Xudong F. Analysis of single nanoparticle detection by using 3-dimensionally confined optofluidic ring resonators. Opt Express 2010;18:25081–8.Google Scholar
[186]
Armani DK, Kippenberg TJ, Spillane SM, Vahala KJ. Ultrahigh-Q toroid microcavity on a chip. Nature 2003;421: 925–8.Google Scholar
[187]
Lee H, Chen T, Li J, Yang KY, Jeon S, Painter O, Vahala KJ. Chemically etched ultrahigh-Q wedge-resonator on a silicon chip. Nature Photonics 2012;6:369–73.Google Scholar
[188]
Grossmann T, Hauser M, Beck T, Gohn-Kreuz C, Karl M, Kalt H, Vannahme C, Mappes T. High-Q conical polymeric microcavities. Appl Phys Lett 2010;96:013303-1–3.Google Scholar
[189]
Silverstone JW, McFarlane S, Manchee CPK, Meldrum A. Ultimate resolution for refractometric sensing with whispering gallery mode microcavities. Opt Express 2012;20:8284–95.Google Scholar
[190]
Manchee CPK, Zamora V, Silverstone JW, Veinot JGC, Meldrum A. Refractometric sensing with fluorescent-core microcapillaries. Opt Express 2011;19:21540–51.Google Scholar
[191]
Francois A, Himmelhaus M. Optical biosensor based on whispering gallery mode excitations in clusters of microparticles. Appl Phys Lett 2008;92:141107-1–3.Google Scholar
[192]
Himmelhaus M. Whispering gallery mode-microlasers embedded into a dense medium. Opt Commun 2011;284:4843–6.Google Scholar
[193]
Smith EJ, Schulze S, Kiravittaya S, Mei YF, Sanchez S, Schmidt OG. Lab-in-a-tube: ultracompact components for on-chip capture and detection of individual micro-/nanoorganisms. Lab Chip 2012;12:1917–31.Google Scholar
[194]
Beier HT, Cote GL, Meissner KE. Whispering gallery mode biosensors consisting of quantum dot-embedded microspheres. Ann Biomed Eng 2009;37:1974–83.Google Scholar
[195]
Xu F, Horak P, Brambilla G. Optical microfiber coil resonator refractometric sensor (vol 15, pg 7888, 2007). Optics Express 2007;15:9385.Google Scholar
[196]
Kang C, Phare CT, Vlasov YA, Assefa S, Weiss SM. Photonic crystal slab sensor with enhanced surface area. Opt Express 2010;18:27930–7.Google Scholar
[197]
Scullion MG, Di Falco A, Krauss TF. Slotted photonic crystal cavities with integrated microfluidics for biosensing applications. Biosens Bioelectron 2011;27:101–5.Google Scholar
[198]
Quan QM, Loncar M. Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities. Opt Express 2011;19:18529–42.Google Scholar
[199]
Takahashi Y, Tanaka Y, Hagino H, Sugiya T, Sato Y, Asano T, Noda S. Design and demonstration of high-Q photonic heterostructure nanocavities suitable for integration. Opt Express 2009;17:18093–102.Google Scholar
[200]
Grepstad JO, Kaspar P, Solgaard O, Johansen IR, Sudbo AS. Photonic-crystal membranes for optical detection of single nano-particles, designed for biosensor application. Opt Express 2012;20:7954–65.Google Scholar
[201]
Topolancik J, Vollmer F, Ilic R, Crescimanno M. Out-ofplane scattering from vertically asymmetric photonic crystal slab waveguides with in-plane disorder. Opt Express 2009;17:12470–80.Google Scholar
[202]
Cunningham BT, Laing L. Microplate-based, label-free detection of biomolecular interactions: applications in proteomics. Expert Rev Proteomics 2006;3:271–81.Google Scholar
[203]
Cunningham BT. Photonic crystal surfaces as a general purpose platform for label-free and fluorescent assays. Jala 2010;15:120–35:221108-1–3.Google Scholar
[204]
Pang S, Beckham RE, Meissner KE. Quantum dot-embedded microspheres for remote refractive index sensing. Appl Phys Lett 2008;92.Google Scholar
[205]
Zhang XW, Ren LQ, Wu X, Li H, Liu LY, Xu L. Coupled optofluidic ring laser for ultrahigh-sensitive sensing. Opt Express 2011;19:22242–7.Google Scholar
[206]
Humar M, Musevic I. Surfactant sensing based on whispering-gallery-mode lasing in liquid-crystal microdroplets. Opt Express 2011;19:19836–44.Google Scholar
[207]
Tan YF, Ge C, Chu A, Tan YF, Ge C, Chu A, Lu M, Goldshlag W, Huang CS, Pokhriyal A, George S, Cunningham BT. Plastic-Based Distributed Feedback Laser Biosensors in Microplate Format. IEEE Sens J 2012;12:1174–80.Google Scholar
[208]
Camden JP, Dieringer JA, Wang YM, Masiello DJ, Marks LD, Schatz GC, Van Duyne RP. Probing the structure of single-molecule surface-enhanced Raman scattering hot spots. J Am Chem Soc 2008;130:12616.Google Scholar
[209]
Talley CE, Jackson JB, Oubre C, Grady NK, Hollars CW, Lane SM, Huser TR, Nordlander P, Halas NJ. Surfaceenhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates. Nano Lett 2005;5: 1569–74.Google Scholar
[210]
Fromm DP, Sundaramurthy A, Kinkhabwala A, Schuck PJ, Kino GS, Moerner WE. Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas. J Chem Phys 2006;124:061101-1–4.Google Scholar
[211]
Boriskina SV. Spectrally engineered photonic molecules as optical sensors with enhanced sensitivity: a proposal and numerical analysis. J Opt Soc Am B-Opt Phys 2006;23: 1565–73.Google Scholar
[212]
Frimmer M, Koenderink AF. Superemitters in hybrid photonic systems: a simple lumping rule for the local density of optical states and its break-down at the unitary limit. arXiv:12041675 2012.Google Scholar
[213]
Xiao YF, Liu YC, Li BB, Chen YL, Li Y, Gong QH. Strongly enhanced light-matter interaction in a hybrid photonic-plasmonic resonator. Phys Rev A 2012;85:031805-1–5.Google Scholar
[214]
Ausman LK, Schatz GC. Whispering-gallery mode resonators: surface enhanced Raman scattering without plasmons. J Chem Phys 2008;129:054704-1–10.Google Scholar
[215]
Rakovich YP, Donegan JF, Gaponik N, Rogach AL. Raman scattering and anti-Stokes emission from a single spherical microcavity with a CdTe quantum dot monolayer. Appl Phys Lett 2003;83:2539–41.Google Scholar
[216]
White IM, Oveys H, Fan XD. Increasing the enhancement of SERS with dielectric microsphere resonators. Spectroscopy 2006;21:36.Google Scholar
[217]
Shopova SI, Blackledge CW, Rosenberger AT. Enhanced evanescent coupling to whispering-gallery modes due to gold nanorods grown on the microresonator surface. Appl Phys B-Lasers Opt 2008;93:183–7.Google Scholar
[218]
Min BK, Ostby E, Sorger V, Ulin-Avila E, Yang L, Zhang X, Vahala K. High-Q surface-plasmon-polariton whispering-gallery microcavity. Nature 2009;457:455-U3.Google Scholar
[219]
Yun-Feng X, Chang-Ling Z, Bei-Bei L, Yan, Li, Chun-Hua D, Zheng-Fu H, Qihuang G. High-Q exterior whispering-gallery modes in a metal-coated microresonator. Phys Rev Lett 2010;105:153902 (4 pp.)- (4 pp.) (4 pp.).Google Scholar
[220]
Hon NK, Poon AW. Surface plasmon resonance-assisted coupling to whispering-gallery modes in micropillar resonators. J Opt Soc Am B 2007;24:1981–6.Google Scholar
[221]
Liu YC, Xiao YF, Jiang XF, Li BB, Li Y, Gong QH. Cavity-QED treatment of scattering-induced free-space excitation and collection in high-Q whispering-gallery microcavities. Phys Rev A 2012;85:013843-1–9.Google Scholar
[222]
Zhou LJ, Sun XM, Li XW, Chen JP. Miniature microring resonator sensor based on a hybrid plasmonic waveguide. Sensors 2011;11:6856–67.Google Scholar
[223]
Chamanzar M, Adibi A. Hybrid nanoplasmonic-photonic resonators for efficient coupling of light to single plasmonic nanoresonators. Opt Express 2011;19:22292–304.Google Scholar
[224]
Barrios CA. Optical slot-waveguide based biochemical sensors. Sensors 2009;9:4751–65.Google Scholar
[225]
El Beheiry M, Liu V, Fan SH, Levi O. Sensitivity enhancement in photonic crystal slab biosensors. Opt Express 2010;18:22702–14.Google Scholar
[226]
Lin SY, Schonbrun E, Crozier K. Optical manipulation with planar silicon microring resonators. Nano Lett 2010;10:2408–11.Google Scholar
[227]
Cai H, Poon AW. Optical manipulation and transport of microparticles on silicon nitride microring-resonator-based add drop devices. Opt Lett 2010;35:2855–7.Google Scholar
[228]
Chen YF, Serey X, Sarkar R, Chen P, Erickson D. Controlled photonic manipulation of proteins and other nanomaterials. Nano Lett 2012;12:1633–7.Google Scholar
[229]
Luan L, Royal MW, Evans R, Fair RB, Jokerst NM. Chip scale optical microresonator sensors integrated with embedded thin film photodetectors on electrowetting digital microfluidics platforms. IEEE Sens J 2012;12:17984–800.Google Scholar
[230]
De Angelis F, Gentile F, Mecarini F, Das G, Moretti M, Candeloro P, Coluccio ML, Cojoc G, Accardo A, Liberale C, Zaccaria RP, Perozziello G, Tirinato L, Toma A, Cuda G, Cingolani R, Di Fabrizio E. Breaking the diffusion limit with super-hydrophobic delivery of molecules to plasmonic nanofocusing SERS structures. Nat Photonics 2011;5:683–8.Google Scholar
[231]
Deubel M, Von Freymann G, Wegener M, Pereira S, Busch K, Soukoulis CM. Direct laser writing of three-dimensional photonic-crystal templates for telecommunications. Nat Mater 2004;3:444–7.Google Scholar
[232]
Topolancik J, Vollmer F, Ilic B. Random high-Q cavities in disordered photonic crystal waveguides. Appl Phys Lett 2007;91:201102-1–3.Google Scholar
[233]
Khademhosseini A, Langer R, Borenstein J, Vacanti JP. Microscale technologies for tissue engineering and biology. Proc Natl Acad Sci USA 2006;103:2480–7:048102-1–4.Google Scholar
[234]
Serey X, Mandal S, Chen YF, Erickson D. DNA transport and delivery in thermal gradients near optofluidic resonators. Phys Rev Lett 2012;108.Google Scholar
[235]
Wang K, Crozier KB. Plasmonic trapping with a gold nanopillar. ChemPhysChem 2012;13:2639–48.Google Scholar
[236]
Heyman Y, Buxboim A, Wolf SG, Daube SS, Bar-Ziv RH. Cell-free protein synthesis and assembly on a biochip. Nat Nanotechnol 2012;7:374–8.Google Scholar