[1]
http://www.marketsandmarkets.com/Market-Reports/biosensors-market-798.html. Accessed 16 Dec 2015.Google Scholar
[2]
Homola J. Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev 2008;108:462–93.Google Scholar
[3]
Tokel O, Inci F, Demirci U. Advances in plasmonic technologies for point of care applications. Chem Rev 2014;114:5728–52.Google Scholar
[4]
Gao Y, Gan Q, Bartoli FJ. Breakthroughs in photonics 2013: research highlights on biosensors based on plasmonic nanostructures. IEEE Photonics J 2014;6:1–5.Google Scholar
[5]
Mayer KM, Hafner JH. Localized surface plasmon resonance sensors. Chem Rev 2011;111:3828–57.Google Scholar
[6]
Dahlin Andreas B, Wittenberg Nathan J, Höök F, Oh S-H. Promises and challenges of nanoplasmonic devices for refractometric biosensing. Nanophotonics 2013;2:83.Google Scholar
[7]
Piliarik M, Sipova H, Kvasnicka P, Galler N, Krenn JR, Homola J. High-resolution biosensor based on localized surface plasmons. Opt Express 2012;20:672–80.Google Scholar
[8]
Sipova H, Vrba D, Homola J. Analytical value of detecting an individual molecular binding event: the case of the surface plasmon resonance biosensor. Anal Chem 2012;84:30–33.Google Scholar
[9]
Svedendahl M, Chen S, Dmitriev A, Kall M. Refractometric sensing using propagating versus localized surface plasmons: a direct comparison. Nano Lett 2009;9:4428–33.Google Scholar
[10]
Estevez MC, Otte MA, Sepulveda B, Lechuga LM. Trends and challenges of refractometric nanoplasmonic biosensors: a review. Anal Chim Acta 2014:806:55–73.Google Scholar
[11]
Otte MA, Sepulveda B, Ni WH, Juste JP, Liz-Marzan LM, Lechuga LM. Identification of the optimal spectral region for plasmonic and nanoplasmonic sensing. ACS Nano 2010;4:349–57.Google Scholar
[12]
Yockell-Lelievre H, Bukar N, McKeating KS, Arnaud M, Cosin P, Guo Y, Dupret-Carruel J, Mougin B, Masson JF. Plasmonic sensors for the competitive detection of testosterone. Analyst 2015;140:5105–11.Google Scholar
[13]
Soler M, Mesa-Antunez P, Estevez MC, Ruiz-Sanchez AJ, Otte MA, Sepulveda B, Collado D, Mayorga C, Torres MJ, Perez-Inestrosa E, Lechuga LM. Highly sensitive dendrimer-based nanoplasmonic biosensor for drug allergy diagnosis. Biosens Bioelectron 2015;66:115–23.Google Scholar
[14]
Soler M, Estevez MC, Alvarez M, Otte MA, Sepulveda B, Lechuga LM. Direct detection of protein biomarkers in human fluids using site-specific antibody immobilization strategies. Sensors 2014;14:2239–58.Google Scholar
[15]
Otte MA, Sepulveda B. Figures of merit for refractometric LSPR biosensing. In: Dimitriev A., ed. Nanoplasmonic sensors. USA, Springer Series, 2012, 317–31.Google Scholar
[16]
Mazzotta F, Johnson TW, Dahlin AB, Shaver J, Oh S-H, Höök F. Influence of the evanescent field decay length on the sensitivity of plasmonic nanodisks and nanoholes. ACS Photonics 2015;2:256–62.Google Scholar
[17]
Cialla D, März A, Böhme R, Theil F, Weber K, Schmitt M, Popp J. Surface-enhanced Raman spectroscopy (SERS): progress and trends. Anal Bioanal Chem 2012;403:27–54.Google Scholar
[18]
Khanikaev Alexander B, Wu C, Shvets G. Fano-resonant metamaterials and their applications. Nanophotonics 2013;2:247.Google Scholar
[19]
Bahramipanah M, Dutta-Gupta S, Abasahl B, Martin OJF. Cavity-coupled plasmonic device with enhanced sensitivity and figure-of-merit. ACS Nano 2015;9:7621–33.Google Scholar
[20]
Feuz L, Jonsson MP, Höök F. Material-selective surface chemistry for nanoplasmonic sensors: optimizing sensitivity and controlling binding to local hot spots. Nano Lett 2012;12:873–79.Google Scholar
[21]
Zeng S, Yong K-T, Roy I, Dinh X-Q, Yu X, Luan F. A review on functionalized gold nanoparticles for biosensing applications. Plasmonics 2011;6:491–506.Google Scholar
[22]
Fredriksson H, Alaverdyan Y, Dmitriev A, Kasemo BH. Hole-mask colloidal lithography. Adv Mater 2007;19:4297.Google Scholar
[23]
Colson P, Henrist C, Cloots R. Nanosphere lithography: a powerful method for the controlled manufacturing of nanomaterials. J Nanomater 2013;2013:19.Google Scholar
[24]
Biswas A, Bayer IS, Biris AS, Wang T, Dervishi E, Faupel F. Advances in top-down and bottom-up surface nanofabrication: techniques, applications & future prospects. Adv Coll Interf Sci 2012;170:2–27.Google Scholar
[25]
Chen Y. Nanofabrication by electron beam lithography and its applications: a review. Microelectron Eng 2015;135:57–72.Google Scholar
[26]
Wang H, Zhou W, Li EP. Focused ion beam assisted interface detection for fabricating functional plasmonic nanostructures. J Nanomater 2015;2015:9.Google Scholar
[27]
Xu Z, Fang F, Zeng G. Focused ion beam nanofabrication technology. In: Nee A., ed. Handbook of manufacturing engineering and technology. London, Springer, 2013, 1–28.Google Scholar
[28]
Aksu S, Yanik AA, Adato R, Artar A, Huang M, Altug H. High-throughput nanofabrication of infrared plasmonic nanoantenna arrays for vibrational nanospectroscopy. Nano Lett 2010;10:2511–18.Google Scholar
[29]
Kooy N, Mohamed K, Pin L, Guan O. A review of roll-to-roll nanoimprint lithography. Nanoscale Res Lett 2014;9:320.Google Scholar
[30]
Seo J-H, Park JH, Kim S-I, Park BJ, Ma Z, Choi J, Ju BK. Nanopatterning by laser interference lithography: applications to optical devices. J Nanosci Nanotechnol 2014;14:1521–32.Google Scholar
[31]
Gartia MR, Hsiao A, Pokhriyal A, Seo S, Kulsharova G, Cunningham BT, Bond TC, Liu GL. Colorimetric plasmon resonance imaging using nano Lycurgus cup arrays. Adv Opt Mater 2013;1:68–76.Google Scholar
[32]
Shen Y, Zhou J, Liu T, Tao Y, Jiang R, Liu M, Xiao G, Zhu J, Zhou ZK, Wang X, Jin C, Wang J. Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit. Nat Commun 2013;4:2381.Google Scholar
[33]
Lee KL, Huang JB, Chang JW, Wu SH, Wei PK. Ultrasensitive biosensors using enhanced Fano resonances in capped gold nanoslit arrays. Sci Rep 2015;5:8547.Google Scholar
[34]
Ruemmele JA, Hall WP, Ruvuna LK, Van Duyne RP. A localized surface plasmon resonance imaging instrument for multiplexed biosensing. Anal Chem 2013;85:4560–6.Google Scholar
[35]
Yoshikawa H, Murahashi M, Saito M, Jiang S, Iga M, Tamiya E. Parallelized label-free detection of protein interactions using a hyper-spectral imaging system. Anal Methods 2015;7:5157–61.Google Scholar
[36]
Acimovic SS, Ortega MA, Sanz V, Berthelot J, Garcia-Cordero JL, Renger J, Maerkl SJ, Kreuzer MP, Quidant R. LSPR chip for parallel, rapid, and sensitive detection of cancer markers in serum. Nano Lett 2014;14:2636–41.Google Scholar
[37]
Otte MA, Estévez MC, Regatos D, Lechuga LM, Sepúlveda B. Guiding light in monolayers of sparse and random plasmonic meta-atoms. ACS Nano 2011;5:9179–86.Google Scholar
[38]
Cetin AE, Coskun AF, Galarreta BC, Huang M, Herman D, Ozcan A, Altug H. Handheld high-throughput plasmonic biosensor using computational on-chip imaging. Light-Sci Appl 2014;3:e122.Google Scholar
[39]
Coskun AF, Cetin AE, Galarreta BC, Alvarez DA, Altug H, Ozcan A. Lensfree optofluidic plasmonic sensor for real-time and label-free monitoring of molecular binding events over a wide field-of-view. Sci Rep 2014;4:6789.Google Scholar
[40]
Cappi G, Spiga FM, Moncada Y, Ferretti A, Beyeler M, Bianchessi M, Decosterd L, Buclin T, Guiducci C. Label-free detection of tobramycin in serum by transmission-localized surface plasmon resonance. Anal Chem 2015;87:5278–85.Google Scholar
[41]
Neuzil P, Campos CDM, Wong CC, Soon JBW, Reboud J, Manz A. From chip-in-a-lab to lab-on-a-chip: towards a single handheld electronic system for multiple application-specific lab-on-a-chip (ASLOC). Lab Chip 2014;14:2168–76.Google Scholar
[42]
Neuzil P, Reboud J. Palm-sized biodetection system based on localized surface plasmon resonance. Anal Chem 2008;80:6100–3.Google Scholar
[43]
Preechaburana P, Suska A, Filippini D. Biosensing with cell phones. Trends Biotechnol 2014;32:351–5.Google Scholar
[44]
Dutta S, Choudhury A, Nath P. Evanescent wave coupled spectroscopic sensing using smartphone. IEEE Photonics Technol Lett 2014;26:568–70.Google Scholar
[45]
Roche PJR, Filion-Côté S, Cheung MC-K, Chodavarapu VP, Kirk AG. A camera phone localised surface plasmon biosensing platform towards low-cost label-free diagnostic testing. J Sensors 2011;2011:7.Google Scholar
[46]
Preechaburana P, Suska A, Filippini D. Embedded adaptive optics for ubiquitous lab-on-a-chip readout on intact cell phones. Sensors 2012;12:8586.Google Scholar
[47]
Preechaburana P, Gonzalez MC, Suska A, Filippini D. Surface plasmon resonance chemical sensing on cell phones. Angew Chem Int Ed 2012;51:11585–88.Google Scholar
[48]
Liu Y, Liu Q, Chen S, Cheng F, Wang H, Peng W. Surface plasmon resonance biosensor based on smart phone platforms. Sci Rep 2015;5:12864.Google Scholar
[49]
Zhou X, Wong T, Song H, Wu L, Wang Y, Bai P, Kim DH, Ng S, Tse M, Knoll W. Development of localized surface plasmon resonance-based point-of-care system. Plasmonics 2014;9:835–44.Google Scholar
[50]
Lee K-L, You M-L, Tsai C-H, Lin EH, Hsieh SY, Ho MH, Hsu JC, Wei PK. Nanoplasmonic biochips for rapid label-free detection of imidacloprid pesticides with a smartphone. Biosens Bioelectron 2016;75:88–95.Google Scholar
[51]
Guo L, Wang D, Xu Y, Qiu B, Lin Z, Dai H, Yang HH, Chen G. Discrimination of enantiomers based on LSPR biosensors fabricated with weak enantioselective and nonselective receptors. Biosens Bioelectron 2013;47:199–205.Google Scholar
[52]
Park J-H, Byun J-Y, Mun H, Shim WB, Shin YB, Li T, Kim MG. A regeneratable, label-free, localized surface plasmon resonance (LSPR) aptasensor for the detection of ochratoxin A. Biosens Bioelectron 2014;59:321–27.Google Scholar
[53]
SadAbadi H, Badilescu S, Packirisamy M, Wuthrich R. Integration of gold nanoparticles in PDMS microfluidics for lab-on-a-chip plasmonic biosensing of growth hormones. Biosens Bioelectron 2013;44:77–84.Google Scholar
[54]
Ming H, Wang M, Yin H. Detection of Bacillus thuringiensis Cry1Ab protein based on surface plasmon resonance immunosensor. Anal Biochem 2014;468C:59–65.Google Scholar
[55]
Nagatsuka T, Uzawa H, Sato K, Kondo S, Izumi M, Yokoyama K, Ohsawa I, Seto Y, Neri P, Mori H, Nishida Y, Saito M, Tamiya E. Localized surface plasmon resonance detection of biological toxins using cell surface oligosaccharides on glyco chips. ACS Appl Mater Inter 2013;5:4173–80.Google Scholar
[56]
Vaisocherová H, Brynda E, Homola J. Functionalizable low-fouling coatings for label-free biosensing in complex biological media: advances and applications. Anal Bioanal Chem 2015;407:3927–53.Google Scholar
[57]
Oh B-R, Huang N-T, Chen W, Seo JH, Chen P, Cornell TT, Shanley TP, Fu J, Kurabayashi K. Integrated nanoplasmonic sensing for cellular functional immunoanalysis using human blood. ACS Nano 2014;8:2667–76.Google Scholar
[58]
Foster JR. The functions of cytokines and their uses in toxicology. Int J Exp Pathol 2001;82:171–92.Google Scholar
[59]
Damas P, Canivet JL, de Groote D, Vrindts Y, Albert A, Franchimont P, Lamy M. Sepsis and serum cytokine concentrations. Crit Care Med 1997;25:405–12.Google Scholar
[60]
Lippitz BE. Cytokine patterns in patients with cancer: a systematic review. Lancet Oncol 2013;14:e218–28.Google Scholar
[61]
Inci F, Filippini C, Baday M, Ozen MO, Calamak S, Durmus NG, Wang S, Hanhauser E, Hobbs KS, Juillard F, Kuang PP, Vetter ML, Carocci M, Yamamoto HS, Takagi Y, Yildiz UH, Akin D, Wesemann DR, Singhal A, Yang PL, Nibert ML, Fichorova RN, Lau DT, Henrich TJ, Kaye, Schachter SC, Kuritzkes DR, Steinmetz LM, Gambhir SS, Davis RW, Demirci U. Multitarget, quantitative nanoplasmonic electrical field-enhanced resonating device (NE2RD) for diagnostics. Proc Natl Acad Sci USA 2015;112:E4354–63.Google Scholar
[62]
Chen P, Chung MT, McHugh W, Nidetz R, Li Y, Fu J, Cornell TT, Shanley TP, Kurabayashi K. Multiplex serum cytokine immunoassay using nanoplasmonic biosensor microarrays. ACS Nano 2015;9:4173–81.Google Scholar
[63]
Dodson SL, Cao C, Zaribafzadeh H, Li S, Xiong Q. Engineering plasmonic nanorod arrays for colon cancer marker detection. Biosens Bioelectron 2015;63:472–7.Google Scholar
[64]
Joshi GK, Deitz-McElyea S, Johnson M, Mali S, Korc M, Sardar R. Highly specific plasmonic biosensors for ultrasensitive microRNA detection in plasma from pancreatic cancer patients. Nano Lett 2014;14:6955–63.Google Scholar
[65]
Joshi GK, Deitz-McElyea S, Liyanage T, Lawrence K, Mali S, Sardar R, Korc M. Label-free nanoplasmonic-based short noncoding RNA sensing at attomolar concentrations allows for quantitative and highly specific assay of microRNA-10b in biological fluids and circulating exosomes. ACS Nano 2015;9:11075–89.Google Scholar
[66]
Ma X, Truong PL, Anh NH, Sim SJ. Single gold nanoplasmonic sensor for clinical cancer diagnosis based on specific interaction between nucleic acids and protein. Biosens Bioelectron 2015;67:59–65.Google Scholar
[67]
Nguyen AH, Sim SJ. Nanoplasmonic biosensor: detection and amplification of dual bio-signatures of circulating tumor DNA. Biosens Bioelectron 2015;67:443–49.Google Scholar
[68]
Lee JH, Kim BC, Oh BK, Choi JW. Highly sensitive localized surface plasmon resonance immunosensor for label-free detection of HIV-1. Nanomed Nanotechnol Biol Med 2013;9:1018–26.Google Scholar
[69]
Im H, Shao H, Park YI, Peterson VM, Castro CM, Weissleder R, Lee H. Label-free detection and molecular profiling of exosomes with a nano-plasmonic sensor. Nat Biotechnol 2014;32:490–5.Google Scholar
[70]
He J, Boegli M, Bruzas I, Lum W, Sagle L. Patterned plasmonic nanoparticle arrays for microfluidic and multiplexed biological assays. Anal Chem 2015;87:11407–14.Google Scholar