[1]
Dahlin AB. Plasmonic biosensors: an integrated view of refractometric detection. Washington, DC: IOS Press; 2012.Google Scholar
[2]
Freestone I, Meeks N, Sax M, Higgitt C. The lycurgus cup – a Roman nanotechnology. Gold Bull 2007;40:270–7.Google Scholar
[3]
Bobin O, Schvoerer M, Miane JL, Fabre JF. Coloured metallic shine associated to lustre decoration of glazed ceramics: a theoretical analysis of the optical properties. J Non-Cryst Solids 2003;332:28–34.Google Scholar
[4]
Brown CL, Bushell G, Whitehouse MW, Agrawal DS, Tupe SG, Paknikar KM, Tiekink ERT. Nanogoldpharmaceutics. Gold Bull 2007;40:245–50.Google Scholar
[5]
Giljohann DA, Seferos DS, Daniel WL, Massich MD, Patel PC, Mirkin CA. Gold nanoparticles for biology and medicine. Angew Chem Int Ed 2010;49:3280–94.Google Scholar
[6]
Schultz DA. Plasmon resonant particles for biological detection. Curr Opin Biotech 2003;14:13–22.Google Scholar
[7]
Mie G. Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Annalen der Physik 1908;330: 377–445.Google Scholar
[8]
Gans R, Happel H. Zur Optik kolloidaler Metallösungen. Annalen der Physik 1909;334:277–300.Google Scholar
[9]
Myroshnychenko V, Rodriguez-Fernandez J, Pastoriza-Santos I, Funston AM, Novo C, Mulvaney P, Liz-Marzan LM, Garcia de Abajo FJ. Modelling the optical response of gold nanoparticles. Chem Soc Rev 2008;37:1792–805.Google Scholar
[10]
Jackson JD. Classical electrodynamics. 3rd edition. Wiley, 1998.Google Scholar
[11]
Bohren CF, Huffman DR. Absorption and scattering of light by small particles. New York: Wiley; 1983.Google Scholar
[12]
Kelly KL, Coronado E, Zhao LL, Schatz GC. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 2003;107: 668–77.Google Scholar
[13]
Zeman EJ, Schatz GC. An accurate electromagnetic theory study of surface enhancement factors for silver, gold, copper, lithium, sodium, aluminum, gallium, indium, zinc, and cadmium. J Phys Chem 1987;91:634–43.Google Scholar
[14]
Dahlin AB, Sannomiya T, Zahn R, Sotiriou GA, Vörös J. Electrochemical crystallization of plasmonic nanostructures. Nano Lett 2011;11:1337–43.Google Scholar
[15]
Dahlin AB, Zahn R, Vörös J. Nanoplasmonic sensing of metal–halide complex formation and the electric double layer capacitor. Nanoscale 2012;4:2339–51.Google Scholar
[16]
Bobbert PA, Vlieger J. The polarizability of a spheroidal particle on a substrate. Physica A 1987;147:115–41.Google Scholar
[17]
Englebienne P. Use of colloidal gold surface plasmon resonance peak shift to infer affinity constants from the interactions between protein antigens and antibodies specific for single or multiple epitopes. Analyst 1998;123:1599–603.Google Scholar
[18]
Nath N, Chilkoti A. A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface. Anal Chem 2002;74:504–9.Google Scholar
[19]
Raschke G, Kowarik S, Franzl T, Sonnichsen C, Klar TA, Feldmann J, Nichtl A, Kurzinger K. Biomolecular recognition based on single gold nanoparticle light scattering. Nano Lett 2003;3:935–8.Google Scholar
[20]
Nath N, Chilkoti A. Label-free biosensing by surface plasmon resonance of nanoparticles on glass: optimization of nanoparticle size. Anal Chem 2004;76:5370–8.Google Scholar
[21]
Yu C, Irudayaraj J. Multiplex biosensor using gold nanorods. Anal Chem 2007;79:572–9.Google Scholar
[22]
Nusz GJ, Marinakos SM, Curry AC, Dahlin AB, Höök F, Wax A, Chilkoti A. Label-free plasmonic detection of biomolecular binding by a single gold nanorod. Anal Chem 2008;80:984–9.Google Scholar
[23]
Baciu CL, Becker J, Janshoff A, Sönnichsen C. Protein–membrane interaction probed by single plasmonic nanoparticles. Nano Lett 2008;8:1724–8.Google Scholar
[24]
Dahlin AB, Chen S, Jonsson MP, Gunnarsson L, Käll M, Höök F. High-resolution microspectroscopy of plasmonic nanostructures for miniaturized biosensing. Anal Chem 2009;81:6572–80.Google Scholar
[25]
Raschke G, Brogl S, Susha AS, Rogach AL, Klar TA, Feldmann J, Fieres B, Petkov N, Bein T, Nichtl A, Kurzinger K. Gold nanoshells improve single nanoparticle molecular sensors. Nano Lett 2004;4:1853–7.Google Scholar
[26]
Haes AJ, Van Duyne RP. A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. J Am Chem Soc 2002;124:10596–604.Google Scholar
[27]
Larsson EM, Prinetti A, Käll M, Sutherland DS. Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors. Nano Lett 2007;7:1256–63.Google Scholar
[28]
Lee S, Mayer KM, Hafner JH. Improved localized surface plasmon resonance immunoassay with gold bipyramid substrates. Anal Chem 2009;81:4450–5.Google Scholar
[29]
Dondapati SK, Sau TK, Hrelescu C, Klar TA, Stefani FD, Feldmann J. Label-free biosensing based on single gold nanostars as plasmonic transducers. ACS Nano 2010;4:6318–22.Google Scholar
[30]
Luk’yanchuk B, Zheludev NI, Maier SA, Halas NJ, Nordlander P, Giessen H, Chong CT. The Fano resonance in plasmonic nanostructures and metamaterials. Nature Mater 2010;9:707–15.Google Scholar
[31]
Verellen N, Van Dorpe P, Huang C, Lodewijks K, Vandenbosch GAE, Lagae L, Moshchalkov VV. Plasmon line shaping using nanocrosses for high sensitivity localized surface plasmon resonance sensing. Nano Lett 2011;11:391–7.Google Scholar
[32]
Lange C. Berl klin Wohnschr. 1912;49:897.Google Scholar
[33]
Green F. The colloidal gold reaction of the cerebrospinal fluid. Can Med Assoc J 1925;15:1139–43.Google Scholar
[34]
Elghanian R. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 1997;277:1078–81.Google Scholar
[35]
Olofsson L, Rindzevicius T, Pfeiffer I, Käll M, Höök F. Surface-based gold-nanoparticle sensor for specific and quantitative DNA hybridization detection. Langmuir 2003;19:10414–9.Google Scholar
[36]
Lahav M, Vaskevich A, Rubinstein I. Biological sensing using transmission surface plasmon resonance spectroscopy. Langmuir 2004;20:7365–7.Google Scholar
[37]
Ritchie R. Plasma losses by fast electrons in thin films. Phys Rev 1957;106:874.Google Scholar
[38]
Powell C, Swan J. Origin of the characteristic electron energy losses in aluminum. Phys Rev 1959;115:869–75.Google Scholar
[39]
Homola J, Yee SS, Gauglitz G. Surface plasmon resonance sensors: review. Sens Actuators, B 1999;54:3–15.Google Scholar
[40]
Homola J. Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev 2008;108:462–93.Google Scholar
[41]
Lindquist NC, Nagpal P, McPeak KM, Norris DJ, Oh S-H. Engineering metallic nanostructures for plasmonics and nanophotonics. Rep Prog Phys 2012;75:036501.Google Scholar
[42]
Liedberg B, Nylander C, Lundstrom I. Surface plasmon resonance for gas detection and biosensing. Sens Actuators 1983;4:299–304.Google Scholar
[43]
Rich RL, Myszka DG. Survey of the 2009 commercial optical biosensor literature. J Mol Recognit 2011;24:892–914.Google Scholar
[44]
Li Y-C, Chang Y-F, Su L-C, Chou C. Differential-phase surface plasmon resonance biosensor. Anal Chem 2008;80:5590–5.Google Scholar
[45]
Zhou W-J, Halpern AR, Seefeld TH, Corn RM. Near infrared surface plasmon resonance phase imaging and nanoparticle-enhanced surface plasmon resonance phase imaging for ultrasensitive protein and DNA biosensing with oligonucleotide and aptamer microarrays. Anal Chem 2012;84:440–5.Google Scholar
[46]
Wark AW, Lee HJ, Corn RM. Long-range surface plasmon resonance imaging for bioaffinity sensors. Anal Chem 2005;77:3904–7.Google Scholar
[47]
Slavík R, Homola J. Ultrahigh resolution long range surface plasmon-based sensor. Sens Actuators, B 2007;123:10–2.Google Scholar
[48]
Gordon R, Sinton D, Kavanagh KL, Brolo AG. A new generation of sensors based on extraordinary optical transmission. Acc Chem Res 2008;41:1049–57.Google Scholar
[49]
Jonsson MP, Dahlin AB, Jönsson P, Höök F. Nanoplasmonic biosensing with focus on short-range ordered nanoholes in thin metal films (Review). Biointerphases 2008;3:FD30–FD40.Google Scholar
[50]
Masson JF, Murray-Methot M-P, Live LS. Nanohole arrays in chemical analysis: manufacturing methods and applications. Analyst 2010;135:1483–9.Google Scholar
[51]
Bethe HA. Theory of diffraction by small holes. Phys Rev 1944;66:163–82.Google Scholar
[52]
Degiron A, Lezec HJ, Yamamoto N, Ebbesen TW. Optical transmission properties of a single subwavelength aperture in a real metal. Opt Commun 2004;239:61–6.Google Scholar
[53]
Ebbesen TW, Lezec HJ, Ghaemi HF, Thio T, Wolff P. Extraordinary optical transmission through sub-wavelength hole arrays. Nature 1998;391:667–9.Google Scholar
[54]
Przybilla F, Genet C, Ebbesen TW. Long vs short-range orders in random subwavelength hole arrays. Opt Express 2012;20:4697–709.Google Scholar
[55]
Sannomiya T, Scholder O, Jefimovs K, Hafner C, Dahlin AB. Investigation of plasmon resonances in metal films with nanohole arrays for biosensing applications. Small 2011;7:1653–63.Google Scholar
[56]
Pacifici D, Lezec HJ, Sweatlock LA, Walters RJ, Atwater HA. Universal optical transmission features in periodic and quasiperiodic hole arrays. Opt. Express 2008;16:9222–38.Google Scholar
[57]
Park T-H, Mirin N, Lassiter JB, Nehl CL, Halas NJ, Nordlander P. Optical properties of a nanosized hole in a thin metallic film. ACS Nano 2008;2:25–32.Google Scholar
[58]
Barnes WL, Dereux A, Ebbesen TW. Surface plasmon subwavelength optics. Nature 2003;424:824–30.Google Scholar
[59]
Genet C, Ebbesen TW. Light in tiny holes. Nature 2007;445:39–46.Google Scholar
[60]
de Ajajo FJG. Colloquium: Light scattering by particle and hole arrays. Rev Mod Phys 2007;79:1267.Google Scholar
[61]
García-Vidal FJ, Ebbesen TW, Kuipers L. Light passing through subwavelength apertures. Rev Mod Phys 2010;82:729–87.Google Scholar
[62]
Genet C, Van Exter MP, Woerdman J. Fano-type interpretation of red shifts and red tails in hole array transmission spectra. Opt Commun 2003;225:331–6.Google Scholar
[63]
Braun J, Gompf B, Kobiela G, Dressel M. How holes can obscure the view: suppressed transmission through an ultrathin metal film by a subwavelength hole array. Phys Rev Lett 2009;103:203901.Google Scholar
[64]
Brolo AG, Gordon R, Leathem B, Kavanagh KL. Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films. Langmuir 2004;20: 4813–5.Google Scholar
[65]
Dahlin AB, Zäch M, Rindzevicius T, Käll M, Sutherland DS, Höök F. Localized surface plasmon resonance sensing of lipid-membrane-mediated biorecognition events. J Am Chem Soc 2005;127:5043–8.Google Scholar
[66]
Rindzevicius T, Alaverdyan Y, Dahlin AB, Höök F, Sutherland DS, Käll M. Plasmonic sensing characteristics of single nanometric holes. Nano Lett 2005;5:2335–9.Google Scholar
[67]
Laromaine A, Koh L, Murugesan M, Ulijn RV, Stevens MM. Protease-triggered dispersion of nanoparticle assemblies. J Am Chem Soc 2007;129:4156–7.Google Scholar
[68]
Lodewijks K, Van Roy W, Borghs G, Lagae L, Van Dorpe P. Boosting the figure-of-merit of lspr-based refractive index sensing by phase-sensitive measurements. Nano Lett 2012;12:1655–9.Google Scholar
[69]
Dahlin AB, Tegenfeldt JO, Höök F. Improving the instrumental resolution of sensors based on localized surface plasmon resonance. Anal Chem 2006;78:4416–23.Google Scholar
[70]
Murray-Methot M-P, Ratel M, Masson J-F. Optical properties of Au, Ag, and bimetallic Au on Ag nanohole arrays. J Phys Chem C 2010;114:8268–75.Google Scholar
[71]
Piliarik M, Homola J. Surface plasmon resonance (SPR) sensors: approaching their limits? Opt Express 2009;17:16505–17.Google Scholar
[72]
Dahlin AB, Jonsson MP. Nanoplasmonic sensors. In: Dmitriev A, editor. New York, NY: Springer; 2012, pp. 231–65.Google Scholar
[73]
Becker J, Trügler A, Jakab A, Hohenester U, Sönnichsen C. The optimal aspect ratio of gold nanorods for plasmonic bio-sensing. Plasmonics 2010;5:161–7.Google Scholar
[74]
Das M, Hohertz D, Nirwan R, Brolo AG, Kavanagh KL, Gordon R. Improved performance of nanohole surface plasmon resonance sensors by the integrated response method. IEEE Photonics J 2011;3:441–9.Google Scholar
[75]
Svedendahl M, Chen S, Dmitriev A, Käll M. Refractometric sensing using propagating versus localized surface plasmons: a direct comparison. Nano Lett 2009;9:4428–33.Google Scholar
[76]
Johnsson B, Löfås S, Lindquist G. Immobilization of proteins to a carboxymethyldextran-modified gold surface for biospecific interaction analysis in surface plasmon resonance sensors. Anal Biochem 1991;198:268–77.Google Scholar
[77]
Kedem O, Tesler AB, Vaskevich A, Rubinstein I. Sensitivity and optimization of localized surface plasmon resonance transducers. ACS Nano 2011;5:748–60.Google Scholar
[78]
Prikulis J, Hanarp P, Olofsson L, Sutherland D, Käll M. Optical spectroscopy of nanometric holes in thin gold films. Nano Lett 2004;4:1003–7.Google Scholar
[79]
Lee SH, Bantz KC, Lindquist NC, Oh S-H, Haynes CL. Self-assembled plasmonic nanohole arrays. Langmuir 2009;25:13685–93.Google Scholar
[80]
Tetz K, Pang L, Fainman Y. High-resolution surface plasmon resonance sensor based on linewidth-optimized nanohole array transmittance. Opt Lett 2006;31:1528–30.Google Scholar
[81]
Henzie J, Lee MH, Odom TW. Multiscale patterning of plasmonic metamaterials. Nature Nanotech 2007;2:549–54.Google Scholar
[82]
Menezes JW, Ferreira J, Santos MJL, Cescato L, Brolo AG. Large-area fabrication of periodic arrays of nanoholes in metal films and their application in biosensing and plasmonic-enhanced photovoltaics. Adv Funct Mater 2010;20:3918–24.Google Scholar
[83]
Nagpal P, Lindquist NC, Oh S-H, Norris DJ. Ultrasmooth patterned metals for plasmonics and metamaterials. Science 2009;325:594–7.Google Scholar
[84]
Im H, Lee SH, Wittenberg NJ, Johnson TW, Lindquist NC, Nagpal P, Norris DJ, Oh S-H. Template-stripped smooth ag nanohole arrays with silica shells for surface plasmon resonance biosensing. ACS Nano 2011;5:6244–53.Google Scholar
[85]
Lindquist NC, Johnson TW, Norris DJ, Oh S-H. Monolithic integration of continuously tunable plasmonic nanostructures. Nano Lett 2011;11:3526–30.Google Scholar
[86]
Park JH, Ambwani P, Manno M, Lindquist NC, Nagpal P, Oh S-H, Leighton C, Norris DJ. Single-crystalline silver films for plasmonics. Adv Mater 2012;24:3988–92.Google Scholar
[87]
Piliarik M, Párová L, Homola J. High-throughput SPR sensor for food safety. Biosens Bioelectron 2009;24:1399–404.Google Scholar
[88]
Vala M, Chadt K, Piliarik M, Homola J. High-performance compact SPR sensor for multi-analyte sensing. Sens Actuators, B 2010;148:544–9.Google Scholar
[89]
Lindquist NC, Lesuffleur A, Im H, Oh S-H. Sub-micron resolution surface plasmon resonance imaging enabled by nanohole arrays with surrounding Bragg mirrors for enhanced sensitivity and isolation. Lab Chip 2009;9:382–7.Google Scholar
[90]
Nakamoto K, Kurita R, Niwa O, Fujii T, Nishida M. Development of a mass-producible on-chip plasmonic nanohole array biosensor. Nanoscale 2011;3:5067–75.Google Scholar
[91]
Nakamoto K, Kurita R, Niwa O. Electrochemical surface plasmon resonance measurement based on gold nanohole array fabricated by nanoimprinting technique. Anal Chem 2012;84:3187–91.Google Scholar
[92]
Lindquist NC, Johnson TW, Jose J, Otto LM, Oh S-H. Ultrasmooth metallic films with buried nanostructures for backside reflection-mode plasmonic biosensing. Annalen der Physik 2012;524:687–96.Google Scholar
[93]
Stein B, Laluet J-Y, Devaux E, Genet C, Ebbesen TW. Fano resonances and leakage radiation for high-resolution plasmonic sensing. J Phys Chem C 2012;116:6092–6.Google Scholar
[94]
Moreira CS, Lima AMN, Neff H, Thirstrup C. Temperature-dependent sensitivity of surface plasmon resonance sensors at the gold–water interface. Sens Actuators, B 2008;134:854–62.Google Scholar
[95]
Baffou G, Quidant R. Thermo-plasmonics: using metallic nanostructures as nano-sources of heat. Laser & Photon Rev 2012. In press.Google Scholar
[96]
Im H, Sutherland JN, Maynard JA, Oh S-H. Nanohole-based surface plasmon resonance instruments with improved spectral resolution quantify a broad range of antibody-ligand binding kinetics. Anal Chem 2012;84:1941–7.Google Scholar
[97]
Stewart ME, Mack NH, Malyarchuk V, Soares JANT, Lee TW, Gray SK, Nuzzo RG, Rogers JA. Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals. Proc Natl Acad Sci USA 2006;103:17143–8.Google Scholar
[98]
Lee SH, Lindquist NC, Wittenberg NJ, Jordan LR, Oh S-H. Real-time full-spectral imaging and affinity measurements from 50 microfluidic channels using nanohole surface plasmon resonance. Lab Chip 2012;12:3882–90.Google Scholar
[99]
Nusz GJ, Marinakos SM, Rangarajan S, Chilkoti A. Dual-order snapshot spectral imaging of plasmonic nanoparticles. Appl Opt 2011;50:4198–206.Google Scholar
[100]
Lesuffleur A, Im H, Lindquist NC, Lim KS, Oh S-H. Laser-illuminated nanohole arrays for multiplex plasmonic microarray sensing. Opt Express 2008;16:219–24.Google Scholar
[101]
Ji J, O’Connell JG, Carter DJD, Larson DN. High-throughput nanohole array based system to monitor multiple binding events in real time. Anal Chem 2008;80:2491–8.Google Scholar
[102]
Yang J-C, Ji J, Hogle JM, Larson DN. Metallic nanohole arrays on fluoropolymer substrates as small label-free real-time bioprobes. Nano Lett 2008;8:2718–24.Google Scholar
[103]
Endo T, Kerman K, Nagatani N, Hiepa HM, Kim DK, Yonezawa Y, Nakano K, Tamiya E. Multiple label-free detection of antigen–antibody reaction using localized surface plasmon resonance-based core–shell structured nanoparticle layer nanochip. Anal Chem 2006;78:6465–75.Google Scholar
[104]
Ament I, Prasad J, Henkel A, Schmachtel S, Sönnichsen C. Single unlabeled protein detection on individual plasmonic nanoparticles. Nano Lett 2012;12:1092–5.Google Scholar
[105]
McFarland AD, Van Duyne RP. Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity. Nano Lett 2003;3:1057–62.Google Scholar
[106]
Nusz GJ, Curry AC, Marinakos SM, Wax A, Chilkoti A. Rational selection of gold nanorod geometry for label-free plasmonic biosensors. ACS Nano 2009;3:795–806.Google Scholar
[107]
Chen S, Svedendahl M, Van Duyne RP, Käll M. Plasmon-enhanced colorimetric ELISA with single molecule sensitivity. Nano Lett 2011;11:1826–30.Google Scholar
[108]
Zijlstra P, Paulo PMR, Orrit M. Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod. Nature Nanotech 2012;7:379–82.Google Scholar
[109]
Boyer D, Tamarat P, Maali A, Lounis B, Orrit M. Photothermal imaging of nanometer-sized metal particles among scatterers. Science 2002;297:1160–3.Google Scholar
[110]
Feuz L, Jonsson MP, Höök F. Material-selective surface chemistry for nanoplasmonic sensors: optimizing sensitivity and controlling binding to local hot spots. Nano Lett 2012;12: 873–9.Google Scholar
[111]
Dahlin AB. Size matters: problems and advantages associated with highly miniaturized sensors. Sensors 2012;12:3018–36.Google Scholar
[112]
Squires TM, Messinger RJ, Manalis SR. Making it stick: convection, reaction and diffusion in surface-based biosensors. Nat Biotechnol 2008;26:417–26.Google Scholar
[113]
Gunnarsson A, Jönsson P, Marie R, Tegenfeldt JO, Höök F. Single-molecule detection and mismatch discrimination of unlabeled DNA targets. Nano Lett 2008;8:183–8.Google Scholar
[114]
Bally M, Gunnarsson A, Svensson L, Larson G, Zhdanov V, Höök F. Interaction of single viruslike particles with vesicles containing glycosphingolipids. Phys Rev Lett 2011;107:188103.Google Scholar
[115]
Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem Rev 2005;105:1103–70.Google Scholar
[116]
Beeram SR, Zamborini FP. Selective attachment of antibodies to the edges of gold nanostructures for enhanced localized surface plasmon resonance biosensing. J Am Chem Soc 2009;131:11689–91.Google Scholar
[117]
Hostetler MJ, Templeton AC, Murray RW. Dynamics of place-exchange reactions on monolayer-protected gold cluster molecules. Langmuir 1999;15:3782–9.Google Scholar
[118]
Feuz L, Jönsson P, Jonsson MP, Höök F. Improving the limit of detection of nanoscale sensors by directed binding to high-sensitivity areas. ACS Nano 2010;4:2167–77.Google Scholar
[119]
Ferreira J, Santos MJL, Rahman MM, Brolo AG, Gordon R, Sinton D, Girotto EM. Attomolar protein detection using in-Hole surface plasmon resonance. J Am Chem Soc 2009;131:436–7.Google Scholar
[120]
Marie R, Dahlin AB, Tegenfeldt JO, Höök F. Generic surface modification strategy for sensing applications based on Au/SiO2 nanostructures. Biointerphases 2007;2: 49–55.Google Scholar
[121]
Rodríguez-Lorenzo L, la Rica de R, Álvarez-Puebla RA, Liz-Marzan LM, Stevens MM. Plasmonic nanosensors with inverse sensitivity by means of enzyme-guided crystal growth. Nature Mater 2012;11:604–7.Google Scholar
[122]
Cooper MA. Advances in membrane receptor screening and analysis. J Mol Recognit 2004;17:286–315.Google Scholar
[123]
Shi J, Yang T, Kataoka S, Zhang Y, Diaz AJ, Cremer PS. GM1 clustering inhibits cholera toxin binding in supported phospholipid membranes. J Am Chem Soc 2007;129:5954–61.Google Scholar
[124]
Wittenberg NJ, Im H, Johnson TW, Xu X, Warrington AE, Rodriguez M, Oh S-H. Facile assembly of micro- and nanoarrays for sensing with natural cell membranes. ACS Nano 2011;5:7555–64.Google Scholar
[125]
Brändén M, Dahlin S, Höök F. Label-free measurements of molecular transport across liposome membranes using evanescent-wave sensing. ChemPhysChem 2008;9: 2480–5.Google Scholar
[126]
Jonsson MP, Jönsson P, Dahlin AB, Höök F. Supported lipid bilayer formation and lipid-membrane-mediated biorecognition reactions studied with a new nanoplasmonic sensor template. Nano Lett 2007;7:3462–8.Google Scholar
[127]
Im H, Wittenberg NJ, Lesuffleur A, Lindquist NC, Oh S-H. Membrane protein biosensing with plasmonic nanopore arrays and pore-spanning lipid membranes. Chem Sci 2010;1:688–96.Google Scholar
[128]
Lohmüller T, Triffo S, O’Donoghue GP, Xu Q, Coyle MP, Groves JT. Supported membranes embedded with fixed arrays of gold nanoparticles. Nano Lett 2011;11:4912–8.Google Scholar
[129]
Dahlin AB, Jonsson MP, Höök F. Specific self-assembly of single lipid vesicles in nanoplasmonic apertures in gold. Adv Mater 2008;20:1436–42.Google Scholar
[130]
Galush WJ, Shelby SA, Mulvihill MJ, Tao A, Yang P, Groves JT. A nanocube plasmonic sensor for molecular binding on membrane surfaces. Nano Lett 2009;9:2077–82.Google Scholar
[131]
Hennesthal C, Steinem C. Pore-spanning lipid bilayers visualized by scanning force microscopy. J Am Chem Soc 2000;122:8085–6.Google Scholar
[132]
Lazzara TD, Carnarius C, Kocun M, Janshoff A, Steinem C. Separating attoliter-sized compartments using fluid pore-spanning lipid bilayers. ACS Nano 2011;5: 6935–44.Google Scholar
[133]
Janshoff A, Steinem C. Transport across artificial membranes–an analytical perspective. Anal Bioanal Chem 2006;385:433–51.Google Scholar
[134]
Lohmüller T, Iversen L, Schmidt M, Rhodes C, Tu HL, Lin WC, Groves JT. Single molecule tracking on supported membranes with arrays of optical nanoantennas. Nano Lett 2012;12:1717–21.Google Scholar
[135]
Sheehan PE, Whitman LJ. Detection limits for nanoscale biosensors. Nano Lett 2005;5:803–7.Google Scholar
[136]
Eftekhari F, Escobedo C, Ferreira J, Duan X, Girotto EM, Brolo AG, Gordon R, Sinton D. Nanoholes as nanochannels: flow-through plasmonic sensing. Anal Chem 2009;81:4308–11.Google Scholar
[137]
Jonsson MP, Dahlin AB, Feuz L, Petronis S, Höök F. Locally functionalized short-range ordered nanoplasmonic pores for bioanalytical sensing. Anal Chem 2010;82:2087–94.Google Scholar
[138]
Escobedo C, Brolo AG, Gordon R, Sinton D. Flow-through vs flow-over: analysis of transport and binding in nanohole array plasmonic biosensors. Anal Chem 2010;82: 10015–20.Google Scholar
[139]
Mazzotta F, Höök F, Jonsson MP. High throughput fabrication of plasmonic nanostructures in nanofluidic pores for biosensing applications. Nanotechnology 2012;23:415304.Google Scholar
[140]
Escobedo C, Brolo AG, Gordon R, Sinton D. Optofluidic concentration: plasmonic nanostructure as concentrator and sensor. Nano Lett 2012;12:1592–6.Google Scholar
[141]
Kumar S, Wittenberg NJ, Oh, S-H. Nanopore-induced spontaneous concentration for optofluidic sensing and particle assembly. Anal Chem 2012, DOI: 10.1021/ac302690w.Google Scholar