[1]

Joannopoulos JD, Villeneuve PR, Fan S. Photonic crystal: putting a new twist on light. Nature 1997;386:143–9.Google Scholar

[2]

Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics. Phys Rev Lett 1987;58:2059–62.Google Scholar

[3]

Soukoulis CM. Photonic Band Gaps and Localization. New York: Plenum; 1993.Google Scholar

[4]

Veselago VG. The electrodynamics of substances with simultaneously negative value of *ε* and *μ*. Sov Phys Usp 1968;10:509–14.Google Scholar

[5]

Pendry JB, Holden AJ, Stewart WJ, Youngs I. Extremely low frequency plasmons in metallic mesostructures. Phys Rev Lett 1996;76:4773–6.Google Scholar

[6]

Pendry JB, Holden AJ, Robbins DJ, Stewart WJ. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans Microwave Theory Tech 1999;47:2075–84.Google Scholar

[7]

Smith DR, Padilla WJ, View DC, Nemat-Nasser SC, Schultz S. Composite medium with simultaneously negative permeability and permittivity. Phys Rev Lett 2000;84:4184–7.Google Scholar

[8]

Shelby RA, Smith DR, Schultz S. Experimental verification of a negative index of refraction. Science 2001;292:77–9.Google Scholar

[9]

Smith DR, Pendry JB, Wiltshire MCK. Metamaterials and negative refractive index. Science 2004;305:788–92.Google Scholar

[10]

Lodahl P, Driel AF, Nikolaev IS, Irman A, Overgaag K, Vanmaekelbergh D, Vos WL. Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals. Nature 2004;430:654–7.Google Scholar

[11]

Fink Y., Winn JN, Fan S, Chen C., Michel J, Joannopoulos JD, Thomas EL. A dielectric omnidirectional reflector. Science 1998;282:1679–82.Google Scholar

[12]

Hart SD, Maskaly GR, Temelkuran B, Prideaux PH, Joannopoulos JD, Fink Y. External reflection from omnidirectional dielectric mirror fibers. Science 2002;296:510–3.Google Scholar

[13]

Li ZY, Zhang ZQ. Fragility of photonic band gaps in inverseopal photonic crystals. Phys Rev B 2000;62:1516–9.Google Scholar

[14]

Sigalas MM, Soukoulis CM, Chan CT, Biswas R, Ho KM. Effect of disorder on photonic band gaps. Phys Rev B 1999;59:12767–70.Google Scholar

[15]

Asatryan AA, Robinson PA, Botten LC, McPhedran RC, Nicorovici NA, Sterke CM. Effects of geometric and refractive index disorder on wave propagation in two-dimensional photonic crystals. Phys Rev E 2000;62:5711–20.Google Scholar

[16]

Fan S, Villeneuve PR, Joannopoulos JD. Theoretical investigation of fabrication-related disorder on the properties of photonic crystals. J Appl Phys 1995;78:1415–8.Google Scholar

[17]

Smith DR, Schultz S, Markos P, Soukoulis CM. Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients. Phys Rev B 2002;65:195104.Google Scholar

[18]

Pendry JB. Negative refraction. Contemp Phys 2004;45:191–202.Google Scholar

[19]

Ramakrishna SA. Physics of negative refractive index materials. Rep Prog Phys 2005;68:449–521.Google Scholar

[20]

Pendry JB. Negative refraction makes a perfect lens. Phys Rev Lett 2000;85:3966–9.Google Scholar

[21]

Garcia N, Nieto-Vesperinas M. Left-handed materials do not make a perfect lens. Phys Rev Lett 2002;88:207403.Google Scholar

[22]

Grbic A, Eleftheriades GV. Overcoming the diffraction limit with a planar left-handed transmission-line lens. Phys Rev Lett 2004;92:117403.Google Scholar

[23]

Parimi PV, Lu WT, Vodo P, Sridhar S. Imaging by flat lens using negative refraction. Nature 2003;426:404.Google Scholar

[24]

Pendry JB, Schurig D, Smith DR. Controlling electromagnetic fields. Science 2006;312:1780–2.Google Scholar

[25]

Leonhardt U. Optical conformal mapping. Science 2006;312:1777–80.Google Scholar

[26]

Schurig D, Mock JJ, Justice BJ, Cummer SA, Pendry JB, Starr AF, Smith DR. Metamaterial electromagnetic cloak at microwave frequencies. Science 2006;314:977–80.Google Scholar

[27]

Li J, Pendry JB. Hiding under the carpet: a new strategy for cloaking. Phys Rev Lett 2008;101:203901.Google Scholar

[28]

Lai Y, Ng J, Chen HY, Han DZ, Xiao JJ, Zhang ZQ, Chan CT. Illusion optics: the optical transformation of an object into another object. Phys Rev Lett 2009;102:253902.Google Scholar

[29]

Houck AA, Brock JB, Chuang IL. Experimental observations of a left-handed material that obeys Snell’s law. Phys Rev Lett 2003;90:137401.Google Scholar

[30]

Chen JB, Wang Y., Jia BH, Geng T, Li XP, Feng L., Qian W, Liang BM, Zhang XX, Gu M, Zhuang SL. Observation of the inverse Doppler effect in negative-index materials at optical frequencies. Nature Photon 2011;5:239–45.Google Scholar

[31]

Xi S, Chen HS, Jiang T, Ran LX, Huangfu JT, Wu BI, Kong JA, Chen M. Experimental verification of reversed cherenkov radiation in left-handed metamaterial. Phys Rev Lett 2009;103:194801.Google Scholar

[32]

Landau L., Lifschitz EM. Electrodynamics of Continuous Media. New York: Elsevier; 1984.Google Scholar

[33]

Foteinopoulou S, Soukoulis CM. Negative refraction and lefthanded behavior in two-dimensional photonic crystals. Phys Rev B 2003;67:235107.Google Scholar

[34]

Foteinopoulou S, Economou EN, Soukoulis CM. Refraction in media with a negative refractive index. Phys Rev Lett 2003;90:107402.Google Scholar

[35]

Luo CY, Johnson SG, Joannopoulos JD, Pendry JB. All-angle negative refraction without negative effective index. Phys Rev B 2002;65:201104(R).Google Scholar

[36]

Li J, Zhou L., Chan CT, Sheng P. Photonic band gap from a stack of positive and negative index materials. Phys Rev Lett 2003;90:083901.Google Scholar

[37]

Jiang HT, Chen H, Li HQ, Zhang YW, Zhu SY. Omnidirectional gap and defect mode of one-dimensional photonic crystals containing negative-index materials. Appl Phys Lett 2003;83:5386–8.Google Scholar

[38]

Yuan Y, Ran LX, Huangfu JT, Chen HS, Shen LF, Kong JA. Experimental verification of zero order bandgap in a layered stack of left-handed and right-handed materials. Opt Express 2006;14:2220–7.Google Scholar

[39]

Chen H, Ran L., Huangfu JT, Zhang X, Chen K, Grzegorczyk TM, Kong JA. Negative refraction of a combined double S-shaped metamaterial. Appl Phys Lett 2005;86:151909.Google Scholar

[40]

Zhang LW, Zhang YW, He L., Wang ZG, Li HQ, Chen H. $\text{Zero}-\overline{n}$ gaps of photonic crystals consisting of positive and negative index materials in microstrip transmission lines. J Phys D: Appl Phys 2007;40:2579–83.Google Scholar

[41]

Kocaman S, Chatterjee R, Panoiu NC, McMillan JF, Yu MB, Osgood RM, Kwong DL, Wong CW. Observation of Zeroth-Order band gaps in negative-refraction photonic crystal superlattices at near-infrared frequencies. Phys Rev Lett 2009;102:203905.Google Scholar

[42]

Chatterjee R, Panoiu N, Liu K, Dios Z, Yu M, Doan M, Kaufman L., Osgood R, Wong CW. Achieving subdiffraction imaging through bound surface states in negative refraction photonic crystals in the near-infrared range. Phys Rev Lett 2008;100:187401.Google Scholar

[43]

Panoiu NC, Osgood RM, Jr, Zhang S, Brueck SRJ. $\text{Zero}-\overline{n}$ bandgap in photonic crystal superlattices. J Opt Soc Am B 2006;23:506–13.Google Scholar

[44]

Mocella V, Cabrini S, Chang ASP, Dardano P, Moretti L., Rendina I, Olynick D, Harteneck B, Dhuey S. Self-Collimation of Light over Millimeter-Scale Distance in a Quasi-Zero-Average-Index Metamaterial. Phys Rev Lett 2009;102:133902.Google Scholar

[45]

Shadrivov IV, Sukhorukov AA, Kivshar YS. Beam shaping by a periodic structure with negative refraction. Appl Phys Lett 2003;82:3820–2.Google Scholar

[46]

Davoyan AR, Shadrivov IV, Sukhorukov AA, Kivshar YS. Bloch oscillations in chirped layered structures with metamaterials. Opt Express 2008;16:3299–304.Google Scholar

[47]

Davoyan AR, Sukhorukov AA, Shadrivov IV, Kivshar YS. Beam oscillations and curling in chirped periodic structures with metamaterials. Phys Rev A 2009;79:013820.Google Scholar

[48]

Feise MW, Shadrivov IV, Kivshar YS. Tunable transmission and bistability in left-handed band-gap structures. Appl Phys Lett 2004;85:1451–3.Google Scholar

[49]

Hegde RS, Winful HG. Optical bistability in periodic nonlinear structures containing left handed materials. Microw Opt Techn Lett 2005;46:528–30.Google Scholar

[50]

Pan T, Tang CJ, Gao L., Li ZY. Optical bistability of nonlinear multilayered structure containing left-handed materials. Phys Lett A 2005;337:473–9.Google Scholar

[51]

Hegde RS, Winful HG. Zero-*n* gap soliton. Opt Lett 2005;30:1852–4.Google Scholar

[52]

Winful HG, Marburger JH, Garmire E. Theory of bistability in nonlinear distributed feedback structures. Appl Phys Lett 1979;35:379–81.Google Scholar

[53]

Chen W, Mills DL. Gap solitons and the nonlinear optical response of superlattices. Phys Rev Lett 1987;58:160–3.Google Scholar

[54]

Li J, Zhao DG, Liu ZY. Quasiperiodic stacking of positive and negative refractive index materials. Phys Lett A 2004;332:461–8.Google Scholar

[55]

Zhang HY, Zhang YP, Shang TY, Zheng Y., Ren GJ, Wang P, Yao JQ. Omnidirectional $\text{zero}-\overline{n}$ gap in symmetrical Fibonacci sequences composed of positive and negative refractive index materials. Eur Phys J B 2006;52:37–40.Google Scholar

[56]

He H, Zhang WY. Transmission spectra in symmetrical Fibonacci superlattices composed of positive and negative refractive index materials. Phys Lett A 2006;351:198–204.Google Scholar

[57]

Monsoriu JA, Depine RA, Silvestre E. Non-Bragg band gaps in 1D metamaterial aperiod multilayers. J Eur Opt Soc Rapid 2007;2:07002.Google Scholar

[58]

Weng Y., Wang ZG, Chen H. Band structure of comb-like photonic crystals containing meta-materials. Opt Commun 2007;277:80–3.Google Scholar

[59]

Zhang LW, Wang ZG, Chen H, Li HQ, Zhang YW. Experimental study of quasi-one-dimensional comb-like photonic crystals containing left-handed material. Opt Commun 2008;281:3681–5.Google Scholar

[60]

Tan W, Wang ZG, Chen H. Photonic band gap of loop structure containing negative-index materials. Phys Rev E 2008;77:026603.Google Scholar

[61]

Jiang HT, Chen H, Li HQ, Zhang YW, Zi J, Zhu SY. Properties of one-dimensional photonic crystals containing single-negative materials. Phys Rev E 2004;69:066607.Google Scholar

[62]

Alú A, Engheta N. Pairing an Epsilon-Negative Slab With a Mu-Negative Slab: Resonance, Tunneling and Transparency. IEEE Trans Antennas Propag 2003;51:2558–71.Google Scholar

[63]

Weng Y., Wang ZG, Chen H. Band structures of one-dimensional subwavelength photonic crystals containing metamaterials. Phys Rev E 2007;75:046601.Google Scholar

[64]

Gao L., Tang CJ, Wang SM. Photonic band gap from a stack of single-negative materials. J Magn Magn Mater 2006;301:371–7.Google Scholar

[65]

Zhang LW, Zhang YW, He L., Li HQ, Chen H. Experimental investigation on zero-*φ*_{eff} gap of photonic crystals containing single-negative materials. Eur Phys J B 2008;62:1–6.Google Scholar

[66]

Depine RA, Martínez-Ricci ML, Monsoriu JA, Silvestre E, Andrés P. Zero permeability and zero permittivity band gaps in 1D metamaterial photonic crystals. Phys Lett A 2007;364:352–5.Google Scholar

[67]

Monsoriu JA, Depine RA, Martínez-Ricci ML, Silvestre E. Interaction between non-Bragg band gaps in 1D metamaterial photonic crystals. Opt Express 2006;14:12958–67.Google Scholar

[68]

Singh SK, Pandey JP, Thapa KB, Ojha SP. Some new band gaps and defect modes of 1D photonic crystals composed of metamaterials. Solid State Commun 2007;143:217–22.Google Scholar

[69]

Reyes-Gómez E, Mogilevtsev D, Cavalcanti SB, Carvalho CAA, Oliveira LE. Plasmon polaritons in photonic superlattices containing a left-handed material. Europhys Lett 2009;88:24002.Google Scholar

[70]

Reyes-Gómez E, Raigoza N, Cavalcanti SB, Carvalho CAA, Oliveira LE. Plasmon polaritons in photonic metamaterial Fibonacci superlattices. Phys Rev B 2010;81:153101.Google Scholar

[71]

Bruno-Alfonso A, Reyes- Gómez E, Cavalcanti SB, Oliveira LE. Unfolding of plasmon-polariton modes in one-dimensional layered systems containing anisotropic left-handed materials. Phys Rev B 2011;84:113101.Google Scholar

[72]

Shadrivov IV, Sukhorukov AA, Kivshar YS. Guided modes in negative-refractive-index waveguides. Phys Rev E 2003;67:057602.Google Scholar

[73]

Shadrivov IV, Sukhorukov AA, Kivshar YS. Complete band gaps in one-dimensional left-handed periodic structures. Phys Rev Lett 2005;95:193903.Google Scholar

[74]

Sun SL, Huang XQ, Zhou L. Two-dimensional complete photonic gaps from layered periodic structures containing anisotropic left-handed metamaterials. Phys Rev E 2007;75: 066602.Google Scholar

[75]

Pendry JB, Ramakrishna SA. Focusing light using negative refraction. J Phys: Condens Matter 2003;15:6345–64.Google Scholar

[76]

Alù A, Silveirinha MG, Salandrino A, Engheta N. Epsilon-nearzero (ENZ) metamaterials and electromagnetic sources: tailoring the radiation phase pattern. Phys Rev B 2007;75:155410.Google Scholar

[77]

Ziolkowski RW. Propagation in and scattering from a matched metamaterial having a zero index of refraction. Phys Rev E 2004;70:046608.Google Scholar

[78]

Enoch S, Tayeb G, Sabouroux P, Guérin N, Vincent P. A metamaterial for directive emission. Phys Rev Lett 2002;89: 213902.Google Scholar

[79]

Silveirinha M, Engheta N. Tunneling of electromagnetic energy through subwavelength channels and bends using *ε*-near-zero materials. Phys Rev Lett 2006;97:157403.Google Scholar

[80]

Silveirinha M, Engheta N. Design of matched zero-index metamaterials using nonmagnetic inclusions in epsilon-near-zero media. Phys Rev B 2007;75:075119.Google Scholar

[81]

Silveirinha M, Engheta N. Theory of supercoupling, squeezing wave energy, and field confinement in narrow channels and tight bends using *ε*-near-zero metamaterials. Phys Rev B 2007;76:245109.Google Scholar

[82]

Liu R, Cheng Q, Hand T, Mock JJ, Cui TJ, Cummer SA, Smith DR. Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies. Phys Rev Lett 2008;100:023903.Google Scholar

[83]

Edwards B, Alù A, Young ME, Silveirinha M, Engheta N. Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide. Phys Rev Lett 2008;100:033903.Google Scholar

[84]

Halterman K, Feng S. Resonant transmission of electromagnetic fields through subwavelength zero-*ε* slits. Phys Rev A 2008;78:021805(R).Google Scholar

[85]

Hao JM, Yan W, Qiu M. Super-reflection and cloaking based on zero index metamaterial. Appl Phys Lett 2010;96:101109.Google Scholar

[86]

Nguyen VC, Chen L., Halterman K. Total transmission and total reflection by zero index metamaterials with defects. Phys Rev Lett 2010;105:233908.Google Scholar

[87]

Jin Y., He S. Enhancing and suppressing radiation with some permeability-near-zero structures. Opt Express 2010;18:16587–93.Google Scholar

[88]

Xu Y, Chen H. Total reflection and transmission by epsilon-near-zero metamaterials with defects. Appl Phys Lett 2011;98:113501.Google Scholar

[89]

Rahm M, Schurig D, Roberts DA, Cummer SA, Smith DR, Pendry JB. Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations. Photonics Nanostruct Fundam Appl 2008;6:87–95.Google Scholar

[90]

Yang T, Chen HY, Luo XD, Ma HR. Superscatterer: enhancement of scattering with complementary media. Opt Express 2008;16:18545–50.Google Scholar

[91]

Chen HY, Chan CT. Transformation media that rotate electromagnetic fields. Appl Phys Lett 2007;90:241105.Google Scholar

[92]

Huang X, Lai Y., Hang ZH, Zheng H, Chan CT. Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials. Nature Mater 2011;10:582–6.Google Scholar

[93]

Gabrielli LH, Cardenas J, Poitras CB, Lipson M. Silicon nanostructure cloak operating at optical frequencies. Nature Photon 2009;3:461–3.Google Scholar

[94]

Wang LG, Wang ZG, Zhang JX, Zhu SY. Realization of Dirac point with double cones in optics. Opt Lett 2009;34: 1510–2.Google Scholar

[95]

Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005;438:197–200.Google Scholar

[96]

Zhang Y., Tan YW, Stormer HL, Kim P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 2005;438:201–4.Google Scholar

[97]

Katsnelson MI, Novoselov KS, Geim AK. Chiral tunnelling and the Klein paradox in graphene. Nature Phys 2006;2:620–5.Google Scholar

[98]

Haldane FDM, Raghu S. Possible realization of directional optical waveguides in photonic crystals with broken timereversal symmetry. Phys Rev Lett 2008;100:013904.Google Scholar

[99]

Zhang X, Liu Z. Extremal transmission and beating effect of acoustic waves in two-dimensional sonic crystals. Phys Rev Lett 2008;101:264303.Google Scholar

[100]

Wu Y., Li J, Zhang ZQ, Chan CT. Effective medium theory for magnetodielectric composites: beyond the long-wavelength limit. Phys Rev B 2006;74:085111.Google Scholar