[1]
Zheludev NI. The road ahead for metamaterials. Science 2010;328(5978):582–3.Google Scholar
[2]
Soukoulis CM, Wegener M. Optical metamaterials – more bulky and less lossy. Science 2010;330(6011):1633–4.Google Scholar
[3]
Boltasseva A, Atwater HA. Low-loss plasmonic metamaterials. Science 2011;331(6015):290–1.Google Scholar
[4]
Chen H-T, O’Hara JF, Azad AK, Taylor AJ. Manipulation of terahertz radiation using metamaterials. Laser Photonics Rev 2011;5(4):513–33.Google Scholar
[5]
Driscoll T, Palit S, Qazilbash MM, Brehm M, Keilmann F, Chae B-G, Yun S-J, Kim H-T, Cho SY, Jokerst NM, Smith DR, Basov DN. Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide. Appl Phys Lett 2008;93(2):024101.Google Scholar
[6]
Driscoll T, Kim H-T, Chae B-G, Kim B-J, Lee Y-W, Jokerst NM, Palit S, Smith DR, Di Ventra M, Basov DN. Memory metamaterials. Science 2009;325(5947):1518–21.Google Scholar
[7]
Tao H, Strikwerda AC, Fan K, Padilla WJ, Zhang X, Averitt RD. Reconfigurable terahertz metamaterials. Phys Rev Lett 2009;103(14):147401.Google Scholar
[8]
Singh R, Azad AK, Jia QX, Taylor AJ, Chen H-T. Thermal tunability in terahertz metamaterials fabricated on strontium titanate single-crystal substrates. Opt Lett 2011;36(7): 1230–2.Google Scholar
[9]
Chen H-T, Padilla WJ, Zide JMO, Gossard AC, Taylor AJ, Averitt RD. Active terahertz metamaterial devices. Nature 2006;444(7119):597–600.Google Scholar
[10]
Shadrivov IV, Morrison SK, Kivshar YS. Tunable split-ring resonators for nonlinear negative-index metamaterials. Opt Express 2006;14(20):9344–9.Google Scholar
[11]
Chen H-T, Palit S, Tyler T, Bingham CM, Zide JMO, O’Hara JF, Smith DR, Gossard AC, Averitt RD, Padilla WJ, Jokerst NM, Taylor AJ. Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves. Appl Phys Lett 2008;93(9):091117.Google Scholar
[12]
Chan WL, Chen H-T, Taylor AJ, Brener I, Cich MJ, Mittleman DM. A spatial light modulator for terahertz beams. Appl Phys Lett 2009;94(21):213511.Google Scholar
[13]
Chen H-T, Lu H, Azad AK, Averitt RD, Gossard AC, Trugman SA, O’Hara JF, Taylor AJ. Electronic control of extraordinary terahertz transmission through subwavelength metal hole arrays. Opt Express 2008;16(11):7641–8.Google Scholar
[14]
Chen H-T, Padilla WJ, Cich MJ, Azad AK, Averitt RD, Taylor AJ. A metamaterial solid-state terahertz phase modulator. Nat Photon 2009;3(3):148–51.Google Scholar
[15]
Padilla WJ, Taylor AJ, Highstrete C, Lee M, Averitt RD. Dynamical electric and magnetic metamaterial response at terahertz frequencies. Phys Rev Lett 2006;96(10):107401.Google Scholar
[16]
Chen H-T, Padilla WJ, Zide JMO, Bank SR, Gossard AC, Taylor AJ, Averitt RD. Ultrafast optical switching of terahertz metamaterials fabricated on ErAs/GaAs nanoisland superlattices. Opt Lett 2007;32(12):1620–2.Google Scholar
[17]
Degiron A, Mock JJ, Smith DR. Modulating and tuning the response of metamaterials at the unit cell level. Opt Express 2007;15(3):1115–27.Google Scholar
[18]
Kim E, Shen YR, Wu W, Ponizovskaya E, Yu Z, Bratkovsky AM, Wang S-Y, Williams RS. Modulation of negative index metamaterials in the near-IR range. Appl Phys Lett 2007;91(17):173105.Google Scholar
[19]
Chen H-T, O’Hara JF, Azad AK, Taylor AJ, Averitt RD, Shrekenhamer DB, Padilla WJ. Experimental demonstration of frequency-agile terahertz metamaterials. Nat Photon 2008;2(5):295–8.Google Scholar
[20]
Shen N-H, Kafesaki M, Koschny T, Zhang L, Economou EN, Soukoulis CM. Broadband blueshift tunable metamaterials and dual-band switches. Phys Rev B 2009;79(16):161102(R).Google Scholar
[21]
Dani KM, Ku Z, Upadhya PC, Prasankumar RP, Brueck SRJ, Taylor AJ. Subpicosecond optical switching with a negative index metamaterial. Nano Lett 2009;9(10):3565–9.Google Scholar
[22]
Cho DJ, Wu W, Ponizovskaya E, Chaturvedi P, Bratkovsky AM, Wang S-Y, Zhang X, Wang F, Shen YR. Ultrafast modulation of optical metamaterials. Opt Express 2009;17(20):17652–7.Google Scholar
[23]
Shen N-H, Massaouti M, Gokkavas M, Manceau J-M, Ozbay E, Kafesaki M, Koschny T, Tzortzakis S, Soukoulis CM. Optically implemented broadband blueshift switch in the terahertz regime. Phys Rev Lett 2011;106(3):037403.Google Scholar
[24]
Dani KM, Ku Z, Upadhya PC, Prasankumar RP, Taylor AJ, Brueck SRJ. Ultrafast nonlinear optical spectroscopy of a dual-band negative index metamaterial all-optical switching device. Opt Express 2011;19(5):3973–83.Google Scholar
[25]
Roy Chowdhury D, Singh R, O’Hara JF, Chen H-T, Taylor AJ, Azad AK. Dynamically reconfigurable terahertz metamaterial through photo-doped semiconductor. Appl Phys Lett 2011;99(23):231101.Google Scholar
[26]
Singh R, Azad AK, O’Hara JF, Taylor AJ, Zhang W. Effect of metal permittivity on resonant properties of terahertz metamaterials. Opt Lett 2008;33(13):1506–8.Google Scholar
[27]
Singh R, Smirnova E, Taylor AJ, O’Hara JF, Zhang W. Optically thin terahertz metamaterials. Opt Express 2008;16(9): 6537–43.Google Scholar
[28]
Ricci M, Orloff N, Anlage SM. Superconducting metamaterials. Appl Phys Lett 2005;87(3):034102.Google Scholar
[29]
Ricci MC, Anlage SM. Single superconducting split-ring resonator electrodynamics. Appl Phys Lett 2006;88(26):264102.Google Scholar
[30]
Ricci MC, Xu H, Prozorov R, Zhuravel AP, Ustinov AV, Anlage SM. Tunability of superconducting metamaterials. IEEE Trans Appl Supercond 2007;17(2):918–21.Google Scholar
[31]
Kurter C, Abrahams J, Anlage SM. Miniaturized superconducting metamaterials for radio frequencies. Appl Phys Lett 2010;96(25):253504.Google Scholar
[32]
Gu J, Singh R, Tian Z, Cao W, Xing Q, He M, Zhang JW, Han J, Chen H-T, Zhang W. Terahertz superconductor metamaterial. Appl Phys Lett 2010;97(7):071102.Google Scholar
[33]
Fedotov VA, Tsiatmas A, Shi JH, Buckingham R, de Groot P, Chen Y, Wang S, Zheludev NI. Temperature control of Fano resonances and transmission in superconducting metamaterials. Opt Express 2010;18(9):9015–9.Google Scholar
[34]
Chen H-T, Yang H, Singh R, O’Hara JF, Azad AK, Trugman SA, Jia QX, Taylor AJ. Tuning the resonance in high-temperature superconducting terahertz metamaterials. Phys Rev Lett 2010;105(24):247402.Google Scholar
[35]
Jin BB, Zhang C, Engelbrecht S, Pimenov A, Wu J, Xu Q, Cao C, Chen J, Xu W, Kang L, Wu P, Low loss and magnetic field-tunable superconducting terahertz metamaterial. Opt Express 2010;18(16):17504–9.Google Scholar
[36]
Kurter C, Zhuravel AP, Ustinov AV, Anlage SM. Microscopic examination of hot spots giving rise to nonlinearity in superconducting resonators. Phys Rev B 2011;84(10):104515.Google Scholar
[37]
Kurter C, Tassin P, Zhang L, Koschny T, Zhuravel AP, Ustinov AV, Anlage SM, Soukoulis CM. Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial. Phys Rev Lett 2011;107(4):043901.Google Scholar
[38]
Wu J, Jin B, Wan J, Liang L, Zhang Y, Jia T, Cao C, Kang L, Xu W, Chen J, Wu P. Superconducting terahertz metamaterials mimicking electromagnetically induced transparency. Appl Phys Lett 2011;99(16):161113.Google Scholar
[39]
Ozyuzer L, Koshelev AE, Kurter C, Gopalsami N, Li Q, Tachiki M, Kadowaki K, Yamamoto T, Minami H, Yamaguchi H, Tachiki T, Gray KE, Kwok W-K, Welp U, Emission of coherent THz radiation from superconductors. Science 2007;318(5854):1291–3.Google Scholar
[40]
Du J, Hellicar AD, Li L, Hanham SM, Nicolic N, Macfarlane JC, Leslie KE. Terahertz imaging using a high-Tc superconducting Josephson junction detector. Supercond Sci Technol 2008;21(12):125025.Google Scholar
[41]
Chen H-T, O’Hara JF, Taylor AJ, Averitt RD, Highstrete C, Lee M, Padilla WJ. Complementary planar terahertz metamaterials. Opt Express 2007;15(3):1084–95.Google Scholar
[42]
Averitt RD, Taylor AJ. Ultrafast optical and far-infrared quasiparticle dynamics in correlated electron materials. J Phys Condens Matter 2002;14(50):R1357–90.Google Scholar
[43]
Brorson SD, Buhleier R, Trofimov IE, White JO, Ludwig Ch, Balakirev FF, Habermeier H-U, Kuhl J. Electrodynamics of high-temperature superconductors investigated with coherent terahertz pulse spectroscopy. J Opt Soc Am B 1996;13(9):1979–93.Google Scholar
[44]
Terman FE. Radio engineers’ handbook. New York: McGraw-Hill; 1943.Google Scholar