[1]
Kao KC, Hockham GA. Dielectric-fibre surface waveguides for optical frequencies. Proc IEE 1966;113:1151–8.Google Scholar
[2]
Cassidy DT, Johnson DC, Hill KO. Wavelength-dependent transmission of monomode optical fiber tapers. Appl Opt 1985;24:945–50.Google Scholar
[3]
Love JD, Henry WM. Quantifying loss minimisation in single-mode fiber tapers. Electron Lett 1986;22:912–4.Google Scholar
[4]
Bilodeau F, Hill KO, Johnson DC, Faucher S. Compact, low-loss, fused biconical taper couplers: Overcoupled operation and antisymmetric supermode cutoff. Opt Lett 1987;12:634–6.Google Scholar
[5]
Birks TA, Li YW. The shape of fiber tapers. J Lightwave Technol 1992;10:432–8.Google Scholar
[6]
Hale ZM, Payne FP. Demonstration of an optimised evanescent field optical fibre sensor. Anal Chim Acta 1994;293:49–54.Google Scholar
[7]
Knight JC, Cheung G, Jacques F, Birks TA. Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper. Opt Lett 1997;22:1129–31.Google Scholar
[8]
Bures J, Ghosh R. Power density of the evanescent field in the vicinity of a tapered fiber. JOSA A 1999;16:1992–6.Google Scholar
[9]
Birks TA, Wadsworth WJ, Russell PSJ. Supercontinuum generation in tapered fibers. Opt Lett 2000;25:1415–7.Google Scholar
[10]
Tong L, Gattass R, Ashcom J, He S, Lou J, Shen M, Maxwell I, Mazur E. Subwavelength-diameter silica wires for low-loss optical wave guiding. Nature 2003;426:816–9.Google Scholar
[11]
Tong LM, Lou JY, Mazur E. Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides. Opt Express 2004;12:1025–35.Google Scholar
[12]
Sumetsky M, Dulashko Y, Hale A. Fabrication and study of bent and coiled free silica nanowires: self-coupling microloop optical interferometer. Opt Express 2004;12:3521–31.Google Scholar
[13]
Tong L, Lou J, Gattass RR, He S, Chen X, Liu, Mazur E. Assembly of silica nanowires on silica aerogels for microphotonic devices. Nano Lett 2005;5:259–62.Google Scholar
[14]
Yu H, Wang S, Fu J, Qiu M, Li Y, Gu F, Tong L. Modeling bending losses of optical nanofibers or nanowires. Appl Opt 2009;48:4365–9.Google Scholar
[15]
Leon-Saval S, Birks T, Wadsworth W, StJ Russell P, Mason M. Supercontinuum generation in submicron fibre waveguides. Opt Express 2004;12:2864–9.Google Scholar
[16]
Foster MA, Moll KD, Gaeta AL. Optimal waveguide dimensions for nonlinear interactions. Opt Express 2004;12:2880–7.Google Scholar
[17]
Gattass RR, Svacha GT, Tong LM, Mazur E. Supercontinuum generation in submicrometer diameter silica fibers. Opt Express 2006;14:9408–14.Google Scholar
[18]
Foster MA, Turner AC, Lipson M, Gaeta AL. Nonlinear optics in photonic nanowires. Opt Express 2008;16:1300–20.Google Scholar
[19]
Le Kien F, Gupta SD, Balykin VI, Hakuta K. Spontaneous emission of a cesium atom near a nanofiber: Efficient coupling of light to guided modes. Phys Rev A 2005;72:032509.Google Scholar
[20]
Sagué G, Vetsch E, Alt W, Meschede D, Rauschenbeutel A. Cold-atom physics using ultrathin optical fibers: light-induced dipole forces and surface interactions. Phys Rev Lett 2007;99:163602.Google Scholar
[21]
Liang W, Huang YY, Xu Y, Lee RK, Yariv A. Highly sensitive fiber Bragg grating refractive index sensors. Appl Phys Lett 2005;86:151122.Google Scholar
[22]
Lou JY, Tong LM, Ye ZZ. Modeling of silica nanowires for optical sensing. Opt Express 2005;13:2135–40.Google Scholar
[23]
Polynkin P, Polynkin A, Peyghambarian N, Mansuripur M. Evanescent field-based optical fiber sensing device for measuring the refractive index of liquids in microfluidic channels. Opt Lett 2005;30:1273–5.Google Scholar
[24]
Villatoro J, Monzón-Hernández D. Fast detection of hydrogen with nano fiber tapers coated with ultra thin palladium layers. Opt Express 2005;13:5087–92.Google Scholar
[25]
Sumetsky M, Windeler RS, Dulashko Y, Fan X. Optical liquid ring resonator sensor. Opt Express 2007;15:14376–81.Google Scholar
[26]
Wang SS, Pan XY, Tong LM. Modeling of nanoparticle-induced Rayleigh–Gans scattering for nanofiber optical sensing. Opt Commun 2007;276:293–7.Google Scholar
[27]
Warken F, Vetsch E, Meschede D, Sokolowski M, Rauschenbeutel A. Ultra-sensitive surface absorption spectroscopy using sub-wavelength diameter optical fibers. Opt Express 2007;15:11952–8.Google Scholar
[28]
Guo X, Tong LM. Supported microfiber loops for optical sensing. Opt Express 2008;16:14429–34.Google Scholar
[29]
Zhang L, Gu FX, Lou JY, Yin XF, Tong LM. Fast detection of humidity with a subwavelength-diameter fiber taper coated with gelatin film. Opt Express 2008;16:13349–53.Google Scholar
[30]
Coillet A, Cluzel B, Vienne G, Grelu P, de Fornel F. Near-field characterization of glass microfibers on a low-index substrate. Appl Phys B 2010;101:291–5.Google Scholar
[31]
Zhang L, Lou JY, Tong LM. Micro/nanofiber optical sensors. Photonic Sensors 2011;1:31–42.Google Scholar
[32]
Zhang L, Wang P, Xiao Y, Yu HK, Tong LM. Ultra-sensitive microfibre absorption detection in a microfluidic chip. Lab Chip 2011;11:3720–4.Google Scholar
[33]
Ding Y, Yang Q, Guo X, Wang S, Gu F, Fu J, Wan Q, Cheng J, Tong L. Nanowires/microfiber hybrid structure multicolor laser. Opt Express 2009;17:21813–8.Google Scholar
[34]
Yang Q, Jiang XS, Guo X, Chen Y, Tong LM. Hybrid structure laser based on semiconductor nanowires and a silica microfiber knot cavity. Appl Phys Lett 2009;94:101108.Google Scholar
[35]
Guo X, Qiu M, Bao JM, Wiley BJ, Yang Q, Zhang X, Ma Y, Yu H, Tong L. Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits. Nano Lett 2009;9:4515–9.Google Scholar
[36]
Ma YG, Li XY, Yu HK, Tong LM, Gu Y, Gong QH. Direct measurement of propagation losses in silver nanowires. Opt Lett 2010;35:1160–2.Google Scholar
[37]
Armani DK, Kippenberg TJ, Spillane SM, Vahala KJ. Ultra-high-Q toroid microcavity on a chip. Nature 2003;421:925–8.Google Scholar
[38]
Huang KJ, Yang SY, Tong LM. Modeling of evanescent coupling between two parallel optical nanowires. Appl Opt 2007;46:1429–34.Google Scholar
[39]
Chen Y, Ma Z, Yang Q, Tong LM. Compact optical short-pass filters based on microfibers. Opt Lett 2008;33:2565–7.Google Scholar
[40]
Sumetsky M, Dulashko Y, Fini JM, Hale A. Optical microfiber loop resonator. Appl Phys Lett 2005;86:161108.Google Scholar
[41]
Jiang X, Tong L, Vienne G, Guo X, Tsao A, Yang Q, Yang D. Demonstration of optical microfiber knot resonators. Appl Phys Lett 2006;88:223501.Google Scholar
[42]
Sumetsky M, Dulashko Y, Fini JM, Hale A, DiGiovanni DJ. The microfiber loop resonator: theory, experiment, and application. J Lightwave Technol 2006;24:242–50.Google Scholar
[43]
Guo X, Li YH, Jiang XS, Tong LM. Demonstration of critical coupling in microfiber loops wrapped around a copper rod. Appl Phys Lett 2007;91:073512.Google Scholar
[44]
Vienne G, Li YH, Tong LM. Effect of host polymer on microfiber resonator. IEEE Photonics Technol Lett 2007;19:1386–8.Google Scholar
[45]
Xu F, Brambilla G. Embedding optical microfiber coil resonators in Teflon. Opt Lett 2007;32:2164–6.Google Scholar
[46]
Vienne G, Li YH, Tong LM, Grelu P. Observation of a nonlinear microfiber resonator. Opt Lett 2008;33:1500–2.Google Scholar
[47]
Pal P, Knox WH. Fabrication and characterization of fused microfiber resonators. IEEE Photonics Technol Lett 2009;21:766–8.Google Scholar
[48]
Vienne G, Coillet A, Grelu P, El Amraoui M, Jules JC, Smektala F, Tong L. Demonstration of a reef knot microfiber resonator. Opt Express 2009;17:6224–9.Google Scholar
[49]
Jung YM, Brambilla G, Murugan GS, Richardson DJ. Optical racetrack ring-resonator based on two U-bent microfibers. Appl Phys Lett 2011;98:021109.Google Scholar
[50]
Xiao LM, Birks TA. High finesse microfiber knot resonators made from double-ended tapered fibers. Opt Lett 2011;36:1098–100.Google Scholar
[51]
Hu ZF, Li W, Ma YG, Tong LM. General approach to splicing optical microfibers via polymer nanowires. Opt Lett 2012;37:4383–5.Google Scholar
[52]
Jiang XS, Yang Q, Vienne G, Li Y, Tong L, Zhang J, Hu L. Demonstration of microfiber knot laser. Appl Phys Lett 2006;89:143513.Google Scholar
[53]
Li Y, Vienne G, Jiang X, Pan X, Liu X, Gu P, Tong L. Modeling rare-earth doped microfiber ring lasers. Opt Express 2006;14:7073–86.Google Scholar
[54]
Jiang XS, Song QH, Xu L, Fu J, Tong LM. Microfiber knot dye laser based on the evanescent-wave-coupled gain. Appl Phys Lett 2007;90:233501.Google Scholar
[55]
Song QH, Liu LY, Xu L. Lasing action in dye doped polymer nanofiber knot resonator. J Lightwave Technol 2009;27:4374–6.Google Scholar
[56]
Li W, Wang P, Hu ZF, Tong LM. Fusion splicing soft glass microfibers for photonic devices. IEEE Photonics Technol Lett 2011;23:831–3.Google Scholar
[57]
He XY, Liu ZB, Wang DN, Yang MW, Liao CR, Zhao X. Passively mode-locked fiber laser based on reduced graphene oxide on microfiber for ultra-wide-band doublet pulse generation. J Lightwave Technol 2012;30:984–9.Google Scholar
[58]
Sulaiman A, Harun SW, Ahmad F, Norizan SF, Ahmad H. Tunable laser generation with erbium-doped microfiber knot resonator. Laser Phys 2012;22:588–91.Google Scholar
[59]
Balykin VI, Hakuta K, Le Kien F, Liang JQ, Morinaga M. Atom trapping and guiding with a subwavelength-diameter optical fiber. Phys Rev A 2004;70:011401.Google Scholar
[60]
Le Kien F, Balykin VI, Hakuta K. Atom trap and waveguide using a two-color evanescent light field around a subwavelength-diameter optical fiber. Phys Rev A 2004;70:063403.Google Scholar
[61]
Le Kien F, Balykin VI, Hakuta K. Scattering of an evanescent light field by a single cesium atom near a nanofiber. Phys Rev A 2006;73:013819.Google Scholar
[62]
Nayak KP, Hakuta K. Single atoms on an optical nanofibre. New J Phys 2008;10:053003.Google Scholar
[63]
Dawkins ST, Mitsch R, Reitz D, Vetsch E, Rauschenbeutel A. Dispersive optical interface based on nanofiber-trapped atoms. Phys Rev Lett 2011;107:243601.Google Scholar
[64]
Brambilla G, Senthil Murugan G, Wilkinson JS, Richardson DJ. Optical manipulation of microspheres along a sub wavelength optical wire. Opt Lett 2007;32:3041–3.Google Scholar
[65]
Zhao L, Li Y, Qi J, Xu J, Sun Q. Quasi 3-dimensional optical trapping by two counter-propagating beams in nano-fiber. Opt Express 2010;18:5724–9.Google Scholar
[66]
Kien FL, Hakuta K, Balykin VI. Angular momentum of light in an optical nanofiber. Phys Rev A 2006;73:053823.Google Scholar
[67]
She WL, Yu JH, Feng RH. Observation of a push force on the end face of a nanometer silica filament exerted by outgoing light. Phys Rev Lett 2008;101:243601.Google Scholar
[68]
Mansuripur M, Zakharian AR. Theoretical analysis of the force on the end face of a nanofilament exerted by an outgoing light pulse. Phys Rev A 2009;80:023823.Google Scholar
[69]
Yu HK, Fang W, Gu FX, Qiu M, Yang ZY, Tong LM. Longitudinal Lorentz force on a subwavelength-diameter optical fiber. Phys Rev A 2011;83:053830.Google Scholar
[70]
Yu J, Chen C, Zhai Y, Chen Z, Zhang J, Wu L, Huang F, Xiao Y. Total longitudinal momentum in a dispersive optical waveguide. Opt Express 2011;19:25263–78.Google Scholar
[71]
Tong L, Lou J, Ye Z, Svacha GT, Mazur E. Self-modulated taper drawing of silica nanowires. Nanotechnology 2005;16:1445.Google Scholar
[72]
Li YH, Zhao YY, Wang LJ. Demonstration of almost octave-spanning cascaded four-wave mixing in optical microfibers. Opt Lett 2012;37:3441–3.Google Scholar
[73]
Boucouvalas A, Georgiou G. Biconical taper coaxial coupler filter. Electron Lett 1985;21:1033–4.Google Scholar
[74]
Orucevic F, Lefèvre-Seguin V, Hare J. Transmittance and near-field characterization of sub-wavelength tapered optical fibers. Opt Express 2007;15:13624–9.Google Scholar
[75]
Brambilla G, Finazzi V, Richardson D. Ultra-low-loss optical fiber nanotapers. Opt Express 2004;12:2258–63.Google Scholar
[76]
Pricking S, Giessen H. Tapering fibers with complex shape. Opt Express 2010;18:3426–37.Google Scholar
[77]
Xuan HF, Ju J, Jin W. Highly birefringent optical microfibers. Opt Express 2010;18:3828–39.Google Scholar
[78]
Dimmick TE, Kakarantzas G, Birks TA, Russell PSJ. Carbon dioxide laser fabrication of fused-fiber couplers and tapers. Appl Opt 1999;38:6845–8.Google Scholar
[79]
Bohren CF, Huffman DR. Absorption and scattering of light by small particles. Wiley-Vch, 2008.Google Scholar
[80]
Pal P, Knox WH. Low loss fusion splicing of micron scale silica fibers. Opt Express 2008;16:11568–73.Google Scholar
[81]
Wang P, Zhang L, Yang ZY, Gu F, Wang S, Yang Q, Tong L. Fusion spliced microfiber closed-loop resonators. IEEE Photonics Technol Lett 2010;22:1075–7.Google Scholar
[82]
Brambilla G, Koizumi F, Feng X, Richardson DJ. Compound-glass optical nanowires. Electron Lett 2005;41:400.Google Scholar
[83]
Shi L, Chen X, Liu H, Chen Y, Ye Z, Liao W, Xia Y. Fabrication of submicron-diameter silica fibers using electric strip heater. Opt Express 2006;14:5055–60.Google Scholar
[84]
Tong L, Hu L, Zhang J, Qiu J, Yang Q, Lou J, Shen Y, He J, Ye Z. Photonic nanowires directly drawn from bulk glasses. Opt Express 2006;14:82–7.Google Scholar
[85]
Gu FX, Zhang L, Yin XF, Tong LM. Polymer single-nanowire optical sensors. Nano Lett 2008;8:2757–61.Google Scholar
[86]
Xu F, Pruneri V, Finazzi V, Brambilla G. An embedded optical nanowire loop resonator refractometric sensor. Opt Express 2008;16:1062–7.Google Scholar
[87]
Xu F, Brambilla G. Preservation of micro-optical fibers by embedding. Jpn J Appl Phys 2008;47:6675–7.Google Scholar
[88]
Xiao L, Grogan MD, Leon-Saval SG, Williams R, England R, Wadsworth WJ, Birks TA. Tapered fibers embedded in silica aerogel. Opt Lett 2009;34:2724–6.Google Scholar
[89]
Lou N, Jha R, Domínguez-Juárez JL, Finazzi V, Villatoro J, Badenes G, Pruneri V. Embedded optical micro/nano-fibers for stable devices. Opt Lett 2010;35:571–3.Google Scholar
[90]
Xiao LM, Grogan MDW, Wadsworth WJ, England R, Birks TA. Stable low-loss optical nanofibres embedded in hydrophobic aerogel. Opt Express 2011;19:764–9.Google Scholar
[91]
Jung YM, Brambilla G, Richardson DJ. Polarization-maintaining optical microfiber. Opt Lett 2010;35:2034–6.Google Scholar
[92]
Magi EC, Nguyen HC, Eggleton BJ. Air-hole collapse and mode transitions in microstructured fiber photonic wires. Opt Express 2005;13:453–9.Google Scholar
[93]
Liz⃩ Y, M⃤gi E, Ta′eed V, Bolger J, Steinvurzel P, Eggleton B. Microstructured optical fiber photonic wires with subwavelength core diameter. Opt Express 2004;12:3209–17.Google Scholar
[94]
Ebendorff-Heidepriem H, Warren-Smith SC, Monro TM. Suspended nanowires: fabrication, design and characterization of fibers with nanoscale cores. Opt Express 2009;17:2646–57.Google Scholar
[95]
Barrelet CJ, Greytak AB, Lieber CM. Nanowire photonic circuit elements. Nano Lett 2004;4:1981–5.Google Scholar
[96]
Jiang XS, Chen Y, Vienne G, Tong LM. All-fiber add-drop filters based on microfiber knot resonators. Opt Lett 2007;32:1710–2.Google Scholar
[97]
Wang SS, Hu ZF, Li YH, Tong LM. All-fiber Fabry–Perot resonators based on microfiber Sagnac loop mirrors. Opt Lett 2009;34:253–5.Google Scholar
[98]
Snyder AW, Love J. Optical waveguide theory, vol. 190. Springer, 1983.Google Scholar
[99]
Li YH, Tong LM. Mach-Zehnder interferometers assembled with optical microfibers or nanofibers. Opt Lett 2008;33:303–5.Google Scholar
[100]
Sumetsky M. Optics of tunneling from adiabatic nanotapers. Opt Lett 2006;31:3420–2.Google Scholar
[101]
Sumetsky M. Radiation loss of a nanotaper: singular Gaussian beam model. Opt Express 2007;15:1480–90.Google Scholar
[102]
Kien FL, Liang JQ, Hakuta K, Balykin VI. Field intensity distributions and polarization orientations in a vacuum-clad subwavelength-diameter optical fiber. Opt Commun 2004;242:445–55.Google Scholar
[103]
Zheltikov AM. Birefringence of guided modes in photonic wires: Gaussian-mode analysis. Opt Commun 2005;252:78–83.Google Scholar
[104]
Lou JY, Tong LM, Ye ZZ. Dispersion shifts in optical nanowires with thin dielectric coatings. Opt Express 2006;14:6993–98.Google Scholar
[105]
Zhao C, Tang Z, Ye Y, Fan D, Qian L, Wen S, Chen G. Field and dispersion properties of subwavelength-diameter hollow optical fiber. Opt Express 2007;15:6629–34.Google Scholar
[106]
Guo W, Kou JL, Xu F, Lu YQ. Ultra-flattened and low dispersion in engineered microfibers with highly efficient nonlinearity reduction. Opt Express 2011;19:15229–35.Google Scholar
[107]
Clohessy AM, Healy N, Murphy DF, Hussey CD. Short low-loss nanowire tapers on singlemode fibres. Electron Lett 2005;41:954–5.Google Scholar
[108]
Sumetsky M. How thin can a microfiber be and still guide light? Opt Lett 2006;31:870–2.Google Scholar
[109]
Sumetsky M, Dulashko Y, Domachuk P, Eggleton BJ. Thinnest optical waveguide: experimental test. Opt Lett 2007;32:754–6.Google Scholar
[110]
Zhai GY, Tong LM. Roughness-induced radiation losses in optical micro or nanofibers. Opt Express 2007;15:13805–16.Google Scholar
[111]
Kovalenko AV, Kurashov VN, Kisil AV. Radiation losses in optical nanofibers with random rough surface. Opt Express 2008;16:5797–806.Google Scholar
[112]
Foster M, Gaeta A, Cao Q, Trebino R. Soliton-effect compression of supercontinuum to few-cycle durations in photonic nanowires. Opt Express 2005;13:6848–55.Google Scholar
[113]
Foster MA, Dudley JM, Kibler B, Cao Q, Lee D, Trebino R, Gaeta AL. Nonlinear pulse propagation and supercontinuum generation in photonic nanowires: experiment and simulation. Appl Phys B 2005;81:363–7.Google Scholar
[114]
Kolesik M, Moloney JV. Nonlinear optical pulse propagation simulation: From Maxwell’s to unidirectional equations. Phys Rev E 2004;70:036604.Google Scholar
[115]
Kolesik M, Wright EM, Moloney JV. Simulation of femtosecond pulse propagation in sub-micron diameter tapered fibers. Appl Phys B 2004;79:293–300.Google Scholar
[116]
Zheltikov AM. Microstructure optical fibers for a new generation of fiber-optic sources and converters of light pulses. Physics-Uspekhi 2007;50:705.Google Scholar
[117]
Ma Z, Wang SS, Yang Q, Tong LM. Near-field characterization of optical micro/nanofibres. Chin Phys Lett 2007;24:3006.Google Scholar
[118]
Foster MA, Gaeta AL. Ultra-low threshold supercontinuum generation in sub-wavelength waveguides. Opt Express 2004;12:3137–43.Google Scholar
[119]
Yeom DI, M⃤gi EC, Lamont MR, Roelens MA, Fu LB, Eggleton BJ. Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires. Opt Lett 2008;33:660–2.Google Scholar
[120]
Wolchover NA, Luan F, George AK, Knight JC, Omenetto FG. High nonlinearity glass photonic crystal nanowires. Opt Express 2007;15:829–33.Google Scholar
[121]
Zhang WQ, Afshar VS, Ebendorff-Heidepriem H, Monro TM. Record nonlinearity in optical fibre. Electron Lett 2008;44:1453–5.Google Scholar
[122]
Wang SS, Fu J, Qiu M, Huang KJ, Ma Z, Tong LM. Modeling endface output patterns of optical micro/nanofibers. Opt Express 2008;16:8887–95.Google Scholar
[123]
Wang SS, Hu ZF, Yu HK, Fang W, Qiu M, Tong LM. Endface reflectivities of optical nanowires. Opt Express 2009;17:10881–6.Google Scholar
[124]
Brevik I, Ellingsen SÅ. Transverse radiation force in a tailored optical fiber. Phys Rev A 2010;81:011806.Google Scholar
[125]
Le Kien F, Hakuta K. Motion of an atom in a weakly driven fiber-Bragg-grating cavity: force, friction, and diffusion. Phys Rev A 2010;81:063808.Google Scholar
[126]
Li XY, Li W, Guo X, Lou JY, Tong LM. All-fiber hybrid photon-plasmon circuits: integrating nanowire plasmonics with fiber optics. Opt Express 2013;21:15698–705.Google Scholar
[127]
Chen YH, Wu Y, Rao YJ, Deng Q, Gong Y. Hybrid Mach–Zehnder interferometer and knot resonator based on silica microfibers. Opt Commun 2010;283:2953–6.Google Scholar
[128]
Sulaiman A, Harun SW, Lim KS, Ahmad F, Ahmad H. Microfiber Mach-Zehnder interferometer embedded in low index polymer. Opt Laser Technol 2012;44:1186–9.Google Scholar
[129]
Wo J, Wang G, Cui Y, Sun Q, Liang R, Shum PP, Liu D. Refractive index sensor using microfiber-based Mach–Zehnder interferometer. Opt Lett 2012;37:67–9.Google Scholar
[130]
Li BY, Jiang L, Wang SM, Zhou LY, Xiao H, Tsai HL. Ultra-abrupt tapered fiber Mach-Zehnder interferometer sensors. Sensors 2011;11:5729–39.Google Scholar
[131]
Jung YM, Brambilla G, Richardson DJ. Broadband single-mode operation of standard optical fibers by using a sub-wavelength optical wire filter. Opt Express 2008;16:14661–7.Google Scholar
[132]
Lim SD, Lee SG, Lee K, Lee SB. A tunable-transmission sagnac interferometer using an optical microfiber. Jpn J Appl Phys 2010;49:2502.Google Scholar
[133]
Wang T, Li X, Liu F, Long W, Zhang Z, Tong L, Su Y. Enhanced fast light in microfiber ring resonator with a Sagnac loop reflector. Opt Express 2010;18:16156–61.Google Scholar
[134]
Ding M, Wang PF, Lee T, Brambilla G. A microfiber cavity with minimal-volume confinement. Appl Phys Lett 2011;99:051105.Google Scholar
[135]
Nayak KP, Le Kien F, Kawai Y, Hakuta K, Nakajima K, Miyazaki HT, Sugimoto Y. Cavity formation on an optical nanofiber using focused ion beam milling technique. Opt Express 2011;19:14040–50.Google Scholar
[136]
Le Kien F, Nayak KP, Hakuta K. Nanofibers with Bragg gratings from equidistant holes. J Mod Opt 2012;59:274–86.Google Scholar
[137]
Jung YM, Murugan GS, Brambilla G, Richardson DJ. Embedded optical microfiber coil resonator with enhanced high-Q. IEEE Photonics Technol Lett 2010;22:1638–40.Google Scholar
[138]
Sumetsky M. Optical fiber microcoil resonators. Opt Express 2004;12:2303–16.Google Scholar
[139]
Sumetsky M, Dulashko Y, Fishteyn M. Demonstration of a multi-turn microfiber coil resonator. National Fiber Optic Engineers Conference; 2007: Optical Society of America.Google Scholar
[140]
Sumetsky M. Uniform coil optical resonator and waveguide: transmission spectrum, eigenmodes, and dispersion relation. Opt Express 2005;13:4331–40.Google Scholar
[141]
Sumetsky M. Vertically-stacked multi-ring resonator. Opt Express 2005;13:6354–75.Google Scholar
[142]
Xu F, Horak P, Brambilla G. Optimized design of microcoil resonators. J Lightwave Technol 2007;25:1561–7.Google Scholar
[143]
Xu F, Brambilla G. Manufacture of 3-D microfiber coil resonators. IEEE Photonics Technol Lett 2007;19:1481–3.Google Scholar
[144]
Xu F, Horak P, Brambilla G. Conical and biconical ultra-high-Q optical-fiber nanowire microcoil resonator. Appl Opt 2007;46:570–3.Google Scholar
[145]
Xu F, Brambilla G, Feng J, Lu YQ. A microfiber Bragg grating based on a microstructured rod: a proposal. IEEE Photonics Technol Lett 2010;22:218–20.Google Scholar
[146]
Xu F, Brambilla G, Lu YQ. A microfluidic refractometric sensor based on gratings in optical fibre microwires. Opt Express 2009;17:20866–71.Google Scholar
[147]
Xuan HF, Jin W, Zhang M. CO2 laser induced long period gratings in optical microfibers. Opt Express 2009;17:21882–90.Google Scholar
[148]
Xuan HF, Jin W, Liu SJ. Long-period gratings in wavelength-scale microfibers. Opt Lett 2010;35:85–7.Google Scholar
[149]
Zhang Y, Lin B, Tjin SC, Zhang H, Wang G, Shum P, Zhan X. Refractive index sensing based on higher-order mode reflection of a microfiber Bragg grating. Opt Express 2010;18:26345–50.Google Scholar
[150]
Ran Y, Tan YN, Sun LP, Gao S, Li J, Jin L, Guan BO. 193 nm excimer laser inscribed Bragg gratings in microfibers for refractive index sensing. Opt Express 2011;19:18577–83.Google Scholar
[151]
Fang X, Liao CR, Wang DN. Femtosecond laser fabricated fiber Bragg grating in microfiber for refractive index sensing. Opt Lett 2010;35:1007–9.Google Scholar
[152]
Kou JL, Qiu SJ, Xu F, Lu YQ. Demonstration of a compact temperature sensor based on first-order Bragg grating in a tapered fiber probe. Opt Express 2011;19:18452–7.Google Scholar
[153]
Liu YX, Meng C, Zhang AP, Xiao Y, Yu HK, Tong LM. Compact microfiber Bragg gratings with high-index contrast. Opt Lett 2011;36:3115–7.Google Scholar
[154]
Ahmad R, Rochette M, Baker C. Fabrication of Bragg gratings in subwavelength diameter As2Se3 chalcogenide wires. Opt Lett 2011;36:2886–8.Google Scholar
[155]
Ran Y, Jin L, Tan YN, Sun LP, Li J, Guan BO. High-efficiency ultraviolet inscription of Bragg gratings in microfibers. Photonics J IEEE 2012;4:181–6.Google Scholar
[156]
Chremmos ID, Uzunoglu NK. Analysis of scattering by a linear chain of spherical inclusions in an optical fiber. JOSA A 2006;23:3054–62.Google Scholar
[157]
Wu Y, Zhang TH, Rao YJ, Gong Y. Miniature interferometric humidity sensors based on silica/polymer microfiber knot resonators. Sens Actuators B 2011;155:258–63.Google Scholar
[158]
Shi L, Xu YH, Tan W, Chen XF. Simulation of optical microfiber loop resonators for ambient refractive index sensing. Sensors 2007;7:689–96.Google Scholar
[159]
Xu F, Brambilla G. Demonstration of a refractometric sensor based on optical microfiber coil resonator. Appl Phys Lett 2008;92:101126.Google Scholar
[160]
Vienne G, Grelu P, Pan XY, Li YH, Tong LM. Theoretical study of microfiber resonator devices exploiting a phase shift. J Opt A: Pure Appl Opt 2008;10:025303.Google Scholar
[161]
Sumetsky M. Optimization of optical ring resonator devices for sensing applications. Opt Lett 2007;32:2577–9.Google Scholar
[162]
Sumetsky M. Optimization of resonant optical sensors. Opt Express 2007;15:17449–57.Google Scholar
[163]
Xu F, Horak P, Brambilla G. Optical microfiber coil resonator refractometric sensor. Opt Express 2007;15:7888–93.Google Scholar
[164]
Gu FX, Yin XF, Yu HK, Wang P, Tong LM. Polyaniline/polystyrene single-nanowire devices for highly selective optical detection of gas mixtures. Opt Express 2009;17:11230–5.Google Scholar
[165]
Meng C, Xiao Y, Wang P, Zhang L, Liu YX, Tong LM. Quantum-Dot-Doped Polymer Nanofibers for Optical Sensing. Adv Mater 2011;23:3770–4.Google Scholar
[166]
Kieu K, Mansuripur M. Femtosecond laser pulse generation with a fiber taper embedded in carbon nanotube/polymer composite. Opt Lett 2007;32:2242–4.Google Scholar
[167]
Song YW, Morimune K, Set SY, Yamashita S. Polarization insensitive all-fiber mode-lockers functioned by carbon nanotubes deposited onto tapered fibers. Appl Phys Lett 2007;90:021101.Google Scholar
[168]
Kieu K, Mansuripur M. All-fiber bidirectional passively mode-locked ring laser. Opt Lett 2008;33:64–6.Google Scholar
[169]
Kashiwagi K, Yamashita S. Deposition of carbon nanotubes around microfiber via evanascent light. Opt Express 2009;17:18364–70.Google Scholar
[170]
Kieu K, Wise F. Soliton thulium-doped fiber laser with carbon nanotube saturable absorber. IEEE Photonics Technol Lett 2009;21:128–30.Google Scholar
[171]
Fujiwara M, Toubaru K, Noda T, Zhao HQ, Takeuchi S. Highly efficient coupling of photons from nanoemitters into single-mode optical fibers. Nano Lett 2011;11:4362–5.Google Scholar
[172]
Le Kien F, Hakuta K. Deterministic generation of a pair of entangled guided photons from a single atom in a nanofiber cavity. Phys Rev A 2011;84:053801.Google Scholar
[173]
Le Kien F, Hakuta K. Triggered generation of single guided photons from a single atom in a nanofiber cavity. Phys Rev A 2011;83:043801.Google Scholar
[174]
Yalla R, Le Kien F, Morinaga M, Hakuta K. Efficient channeling of fluorescence photons from single quantum dots into guided modes of optical nanofiber. Phys Rev Lett 2012;109:063602.Google Scholar
[175]
Fu J, Yin X, Li N, Tong LM. Atom waveguide and 1D optical lattice using a two-color evanescent light field around an optical micro/nano-fiber. Chin Opt Lett 2008;6:112–5.Google Scholar
[176]
Lacroûte C, Choi KS, Goban A, Alton DJ, Ding D, Stern NP, Kimble HJ. A state-insensitive, compensated nanofiber trap. New J Phys 2012;14:023056.Google Scholar
[177]
Minogin VG, Chormaic SN. Manifestation of the van der Waals surface interaction in the spontaneous emission of atoms into an optical nanofiber. Laser Phys 2010;20:32–7.Google Scholar
[178]
Le Kien F, Gupta SD, Nayak KP, Hakuta K. Nanofiber-mediated radiative transfer between two distant atoms. Phys Rev A 2005;72:063815.Google Scholar
[179]
Vetsch E, Reitz D, Sagu⃩ G, Schmidt R, Dawkins ST, Rauschenbeutel A. Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber. Phys Rev Lett 2010;104:203603.Google Scholar
[180]
Salit K, Salit M, Krishnamurthy S, Wang Y, Kumar P, Shahriar MS. Ultra-low power, Zeno effect based optical modulation in a degenerate V-system with a tapered nano fiber in atomic vapor. Opt Express 2011;19:22874–81.Google Scholar
[181]
Russell L, Deasy K, Daly MJ, Morrissey MJ, Chormaic SN. Sub-Doppler temperature measurements of laser-cooled atoms using optical nanofibres. Meas Sci Technol 2012;23:015201.Google Scholar
[182]
Zhou G, Feng G, Zhou H, Deng G, Zhang Y, Ma Z. Experimental investigation of supercontinuum generated from microfiber loop wound on Al-coated silica rod. Opt Commun 2011;284:4769–72.Google Scholar
[183]
Ismaael R, Lee T, Ding M, Broderick NG, Brambilla G.. Nonlinear microfiber loop resonators for resonantly enhanced third harmonic generation. Opt Lett 2012;37:5121–3.Google Scholar
[184]
Grubsky V, Savchenko A. Glass micro-fibers for efficient third harmonic generation. Opt Express 2005;13:6798–806.Google Scholar
[185]
Grubsky V, Feinberg J. Phase-matched third-harmonic UV generation using low-order modes in a glass micro-fiber. Opt Commun 2007;274:447–50.Google Scholar
[186]
Coillet A, Vienne G, Grelu P. Potentialities of glass air-clad micro- and nanofibers for nonlinear optics. J Opt Soc Am B: Opt Phys 2010;27:394–401.Google Scholar
[187]
Wiedemann U, Karapetyan K, Dan C, Dan C, Pritzkau D, Alt W, Irsen S, Meschede D. Measurement of submicrometre diameters of tapered optical fibres using harmonic generation. Opt Express 2010;18:7693–704.Google Scholar
[188]
Coillet A, Grelu P. Third-harmonic generation in optical microfibers: from silica experiments to highly nonlinear glass prospects. Opt Commun 2012;285:3493–3497.Google Scholar
[189]
You H, Hendrickson SM, Franson JD. Analysis of enhanced two-photon absorption in tapered optical fibers. Phys Rev A 2008;78:053803.Google Scholar
[190]
Hendrickson SM, Lai MM, Pittman TB, Franson JD. Observation of two-photon absorption at low power levels using tapered optical fibers in rubidium vapor. Phys Rev Lett 2010;105:173602.Google Scholar
[191]
M⃤gi EC, Fu LB, Nguyen HC, Lamont MRE, Yeom DI, Eggleton BJ. Enhanced Kerr nonlinearity in sub-wavelength diameter As2Se3 chalcogenide fiber tapers. Opt Express 2007;15:10324–9.Google Scholar
[192]
Spillane SM, Pati GS, Salit K, Hall M, Kumar P, Beausoleil RG, Shahriar MS. Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot rubidium vapor. Phys Rev Lett 2008;100:233602.Google Scholar
[193]
Fu LB, Pelusi MD, M⃤gi EC, Ta′Eed VG, Eggleton BJ. Broadband all-optical wavelength conversion of 40Gbit/s signals in nonlinearity enhanced tapered chalcogenide fibre. Electron Lett 2008;44:44–6.Google Scholar
[194]
Pelusi MD, Luan F, Magi E, Lamont MR, Moss DJ, Eggleton BJ, Sanghera JS, Shaw LB, Aggarwal ID. High bit rate all-optical signal processing in a fiber photonic wire. Opt Express 2008;16:11506–12.Google Scholar
[195]
Luan F, Van Erps J, Pelusi MD, M⃤gi E, Iredale T, Thienpont H, Eggleton BJ. High-resolution optical sampling of 640Gbit/s data using dispersion-engineered chalcogenide photonic wire. Electron Lett 2010;46:223–5.Google Scholar
[196]
Chen XW, Sandoghdar V, Agio M. Highly efficient interfacing of guided plasmons and photons in nanowires. Nano Lett 2009;9:3756–61.Google Scholar
[197]
Dong CH, Ren XF, Yang R, Yang R, Duan J-Y, Guan J-G, Guo G-C, Guo G-P. Coupling of light from an optical fiber taper into silver nanowires. Appl Phys Lett 2009;95.Google Scholar
[198]
Ung B, Skorobogatiy M. Extreme nonlinear optical enhancement in chalcogenide glass fibers with deep-subwavelength metallic nanowires. Opt Lett 2011;36:2527–9.Google Scholar
[199]
Schröter U, Dereux A. Surface plasmon polaritons on metal cylinders with dielectric core. Phys Rev B: Condens Matter 2001;64:1254201.Google Scholar
[200]
Roskov KE, Kozek KA, Wu WC, Chhetri RK, Oldenburg AL, Spontak RJ, Tracy JB. Long-range alignment of gold nanorods in electrospun polymer nano/microfibers. Langmuir 2011;27:13965–9.Google Scholar
[201]
Wang P, Zhang L, Xia YN, Tong LM, Xu X, Ying YB. Polymer nanofibers embedded with aligned gold nanorods: a new platform for plasmonic studies and optical sensing. Nano Lett 2012;12:3145–50.Google Scholar
[202]
Dong CH, Zou CL, Ren XF, Guo GC, Sun FW. In-line high efficient fiber polarizer based on surface plasmon. Appl Phys Lett 2012;100:041104.Google Scholar
[203]
Yu J, Feng R, She W. Low-power all-optical switch based on the bend effect of a nm fiber taper driven by outgoing light. Opt Express 2009;17:4640–5.Google Scholar
[204]
Tong LM, Zi F, Guo X, Lou JY. Optical microfibers and nanofibers: a tutorial. Opt Commun 2012;285:4641–7.Google Scholar
[205]
Brambilla G, Xu F, Horak P, Jung Y, Koizumi F, Sessions NP, Koukharenko E, Feng X, Murugan GS, Wilkinson JS, Richardson DJ. Optical fiber nanowires and microwires: fabrication and applications. Advances in Optics and Photonics 2009;1:107.Google Scholar
[206]
Caspar C, Bachus EJ. Fibre-optic micro-ring-resonator with 2 mm diameter. Electron Lett 1989;25:1506–8.Google Scholar
[207]
Wang GH, Shum PP, Tong LM, Li CM, Lin C. Polarization effects in microfiber loop and knot resonators. IEEE Photonics Technol Lett 2010;22:586–8.Google Scholar
[208]
Li XL, Ding H. All-fiber magnetic-field sensor based on microfiber knot resonator and magnetic fluid. Opt Lett 2012;37:5187–9.Google Scholar
[209]
Scheuer J. Fiber microcoil optical gyroscope. Opt Lett 2009;34:1630–2.Google Scholar
[210]
Bo L, Wang PF, Semenova Y, Farrell G. High sensitivity fiber refractometer based on an optical microfiber coupler. IEEE Photonics Technol Lett 2013;25:228–30.Google Scholar
[211]
Zheltikov A. Gaussian-mode analysis of waveguide-enhanced Kerr-type nonlinearity of optical fibers and photonic wires. JOSA B 2005;22:1100–4.Google Scholar