[1]

Barnes WL, Dereux A, Ebbesen TW. Surface plasmon subwavelength optics. Nature 2003;424:824–30.Google Scholar

[2]

Han Z, Bozhevolnyi SI. Radiation guiding with surface plasmon polariton. Rep Prog Phys 2013;76:016402.Google Scholar

[3]

Ritchie RH. Plasma losses by fast electrons in thin films. Phys Rev 1957;106:874–81.Google Scholar

[4]

Powell CJ, Swan JB. Origin of the characteristic electron energy losses in aluminum. Phys Rev 1959;115:869–75.Google Scholar

[5]

Pillai S, Catchpole KR, Trupke T, Green MA. Surface plasmon enhanced silicon solar cells. J Appl Phys 2007;101:093105.Google Scholar

[6]

Atwater HA, Polman A. Plasmonics for improved photovoltaic devices. Nature Mat 2010;9:205–13.Google Scholar

[7]

Ye F, Burns MJ, Naughton MJ. Embedded metallic nanopatterns for enhanced optical absorption. Proc of SPIE 2011;8111:811103.Google Scholar

[8]

Ye F, Burns MJ, Naughton MJ. Embedded metal nanopatterns for near-field scattering enhanced optical absorption. Phys Status Solidi A 2012;209:1829–34.Google Scholar

[9]

Gu M, Ouyang Z, Jia B, Stokes N, Chen X, Fahim N, Li X, Ventura MJ, Shi Z. Nanoplasmonics: a frontier of photovoltaic solar cells. Nanophotonics 2012;1:235–48.Google Scholar

[10]

Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, Dasari RR, Feld MS. Single molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Lett 1997;78:1667–70.Google Scholar

[11]

Halas NJ, Lal S, Chang W-S, Link S, Nordlander P. Plasmons in strongly coupled metallic nanostructures. Chem Rev 2011;111:3913–61.Google Scholar

[12]

Phillips KS, Cheng Q. Recent advances in surface plasmon resonance based techniques for bioanalysis. Anal Bioanal Chem 2007;387:1831–40.Google Scholar

[13]

Wei H, Xu H. Nanowire-based plasmonic waveguides and devices for integrated nanophotonic circuits. Nanophotonics 2012;1:155–69.Google Scholar

[14]

Wang Y, Plummer E W, Kempa K. Foundations of plasmonics. Adv Phys 2011;60:799–898.Google Scholar

[15]

Novotny L, Hecht B. Principles of nano-optics. UK: Cambridge University Press, 2006.Google Scholar

[16]

Garcia de Abajo FJ. Optical excitations in electron microscopy. Rev Mod Phys 2010;82:209–75.Google Scholar

[17]

Kociak M, Garcia de Abajo J. Nanoscale mapping of plasmons, photons, and excitons. MRS Bull 2012;37:39–46.Google Scholar

[18]

Bouhelier A, Huser Th, Tamaru H, Guntherodt H-J, Pohl DW. Plasmon optics of structured silver films. Phys Rev B 2001;63:155404.Google Scholar

[19]

Grandidier J, Massenot S, Colas des Francs G, Bouhelier A, Weeber J-C, Markey L, Dereux A, Renger J, González MU, Quidant R. Dielectric-loaded surface plasmon polariton waveguides: Figures of merit and mode characterization by image and Fourier plane leakage microscopy. Phys Rev B 2008;78:245419.Google Scholar

[20]

Drezet A, Hohenau A, Koller D, Stepanov A, Ditlbacher H, Steinberger B, Aussenegg FR, Leitner A, Krenn JR. Leakage radiation microscopy of surface plasmon polaritons. Mat Sci Eng B 2008;149:220–9.Google Scholar

[21]

Zhang D, Yuan X, Bouhelier A. Direct image of surface-plasmon-coupled emission by leakage radiation microscopy. Appl Opt 2010;49:875–9.Google Scholar

[22]

Liu Y, Palomba S, Park Y, Zentgraf T, Yin X, Zhang X. Compact magnetic antennas for directional excitation of surface plasmons. Nano Lett 2012;12:4853–8.Google Scholar

[23]

Kang T, Choi W, Yoon I, Lee H, Seo M-K, Park Q-H, Kim B. Rainbow radiating single-crystal Ag nanowire antenna. Nano Lett 2012;12:2331–6.Google Scholar

[24]

Maier SA. Plasmonic: Fundamentals and applications. New York: Springer, 2007.Google Scholar

[25]

Kretschmann E, Raether H. Radiative decay of non radiative surface plasmons excited by light. Z Naturforsch A 1968;23:2135–6.Google Scholar

[26]

Otto A. Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Z Phys 1968;216:398–410.Google Scholar

[27]

Ebbesen TW, Lezec HJ, Ghaemi HF, Thio T, Wolff PA. Extraordinary optical transmission through sub-wavelength hole arrays. Nature 1998;391:667–9.Google Scholar

[28]

Gao H, Henzie J, Odom TW. Direct evidence for surface plasmon-mediated enhanced light transmission through metallic nanohole arrays. Nano Lett 2006;6:2104–8.Google Scholar

[29]

Devaux E, Ebbesen TW, Weeber J-C, Dereux A. Launching and decoupling surface plasmons via micro-gratings. Appl Phys Lett 2003;83:4936–8.Google Scholar

[30]

Park S, Lee G, Song SH, Oh CH, Kim PS. Resonant coupling of surface plasmons to radiation modes by use of dielectric gratings. Opt Lett 2003;28:1870–2.Google Scholar

[31]

Radko IP, Bozhevolnyi SI, Brucoli G, Martín-Moreno L, García-Vidal FJ, Boltasseva A. Efficiency of local surface plasmon polariton excitation on ridges. Phys Rev B 2008;78:115115.Google Scholar

[32]

Bouhelier A, Wiederrecht GP. Surface plasmon rainbow jets. Opt Lett 2005;30:884–6.Google Scholar

[33]

Stegeman GI, Wallis RF, Maradudin AA. Excitation of surface polaritons by end-fire coupling. Opt Lett 1983;8:386–8.Google Scholar

[34]

Maier SA, Friedman MD, Barclay PE, Painter O. Experimental demonstration of fiber-accessible metal nanoparticle plasmon waveguides for planar energy guiding and sensing. Appl Phys Lett 2005;86:071103.Google Scholar

[35]

Chang DE, Sorensen AS, Hemmer PR, Lukin MD. Quantum optics with surface plasmons. Phys Rev Lett 2006;97:053002.Google Scholar

[36]

Chang DE, Sorensen AS, Hemmer PR, Lukin MD. Strong coupling of single emitters to surface plasmons. Phys Rev B 2007;76:035420.Google Scholar

[37]

Chang DE, Sorensen AS, Demler EA, Lukin MD. A single-photon transistor using nanoscale surface plasmons. Nat Phys 2007;3:807–12.Google Scholar

[38]

Ye F, Burns MJ, Naughton MJ. Plasmonic Halos-optical surface plasmon drumhead modes. Nano Lett 2013;13:519–23Google Scholar

[39]

Teng Y-Y, Stern EA. Plasma radiation from metal grating surfaces. Phys Rev Lett 1967;19:511–4.Google Scholar

[40]

Heitmann D. Radiative decay of surface plasmons excited by fast electrons on periodically modulated silver surfaces. J Phys C: Solid State Phys 1977;10:397–405.Google Scholar

[41]

Bashevoy MV, Jonsson F, Krasavin AV, Zheludev NI, Chen Y, Stockman MI. Generation of traveling surface plasmon waves by free-electron impact. Nano Lett 2006;6:1113–5.Google Scholar

[42]

Cai W, Sainidou R, Xu J, Polman A, Garcia de Abajo FJ. Efficient generation of propagating plasmons by electron beams. Nano let 2009;9:1176–81.Google Scholar

[43]

Cai W, Wang L, Zhang X, Xu J, García de Abajo FJ. Controllable excitation of gap plasmons by electron beams in metallic nanowire pairs. Phys Rev B 2010;82:125454.Google Scholar

[44]

Adamo G, MacDonald KF, Fu YH, Wang C-M, Tsai DP, Garcia de Abajo FJ, Zheludev NI. Light well: a tunable free-electron light source on a chip. Phys Rev Lett 2009;103:113901.Google Scholar

[45]

Liu S, Zhang P, Liu W, Gong S, Zhong R, Zhang Y, Hu M. Surface polariton Cherenkov light radiation source. Phys Rev Lett 2012;109:153902.Google Scholar

[46]

Lambe J, McCarthy SL. Light emission from inelastic electron tunneling. Phys Rev Lett 1976;37:923–5.Google Scholar

[47]

Berndt R, Gimzewski JK, Johansson P. Inelastic tunneling excitation of tip-induced plasmon modes on noble-metal surfaces. Phys Rev Lett 1991;67:3796–99.Google Scholar

[48]

Bharadwaj P, Bouhelier A, Novotny L. Electrical excitation of surface plasmons. Phys Rev Lett 2011;106:226802.Google Scholar

[49]

Wang T, Boer-Duchemin E, Zhang Y, Comtet G, Dujardin G. Excitation of propagating surface plasmons with a scanning tunneling microscope. Nanotech 2011;22:175201.Google Scholar

[50]

Gimzewski JK, Reihl B, Coombs JH, Schlittler RR. Photon emission with the scanning tunneling microscope. Z Phys B 1988;72:497–501.Google Scholar

[51]

Coombs JH, Gimzewski JK, Reihl B, Sass JK. Photon emission experiments with the scanning tunneling microscope. J Microsc 1988;152:325–36.Google Scholar

[52]

Kempa K, Naughton MJ, Ren ZF, Herczynski A, Kirkpatrick T, Rybczynski J, Gao Y. Hot electron effect in nanoscopically thin photovoltaic junctions. Appl Phys Lett 2009;95:233121.Google Scholar

[53]

Kempa K. Plasmonic protection of the hot-electron energy. Phys Status Solidi (RRL) 2013;7:465–8.Google Scholar

[54]

Lewis A, Isaacson M, Harootunian A, Muray A. Development of a 500 Å spatial resolution light microscope: I. light is efficiently transmitted through λ/16 diameter apertures. Ultramicroscopy 1984;13:227–32.Google Scholar

[55]

Pohl DW, Denk W, Lanz M. Optical stethoscopy: image recording with resolution λ/20. Appl Phys Lett 1984;44:651–3.Google Scholar

[56]

Bozhevolnyi SI, Coello V. Elastic scattering of surface plasmon polaritons: modeling and experiment. Phys Rev B 1998;58:10899–910.Google Scholar

[57]

Binnig G, Rohrer H, Gerber Ch, Weibel E. Surface studies by scanning tunneling microscopy. Phys Rev Lett 1982;49:57–61.Google Scholar

[58]

Courjon D. Near-field microscopy and near field optics. London: Imperial College Press, 2003.Google Scholar

[59]

Denkova D, Verellen N, Silhanek AV, Valev VK, Van Dorpe P, Moshchalkov VV. Mapping magnetic near-field distributions of plasmonic nanoantennas. ACS Nano 2013;7:3168–76.Google Scholar

[60]

Ohtsu M, Kobayashi K. Optical near fields: Introduction to classical and quantum theories of electromagnetic phenomena at the nanoscale. New York: Springer, 2004.Google Scholar

[61]

Betzig E, Finn PL, Weiner JS. Combined shear force and near-field scanning optical microscopy. Appl Phys Lett 1992;60:2484–6.Google Scholar

[62]

Karrai K, Grober RD. Piezoelectric tip-sample distance control for near field optical microscopes. Appl Phys Lett 1995;66:1842–4.Google Scholar

[63]

Merlo JM, Aguilar JF, Martí-Panameño E, Cortés R, Coello V. Angle dependence of the interaction distance in the shear force technique. Rev Sci Instrum 2011;82:083704.Google Scholar

[64]

Vohnsen B, Bozhevolnyi SI. Characterization of near-field optical probes. Appl Opt 1999;38:1792–7.Google Scholar

[65]

Inouye Y, Kawata S. Near-field scanning optical microscope with a metallic probe tip. Opt Lett 1994;19:159–61.Google Scholar

[66]

Sugiura T, Okada T, Inouye Y, Nakamura O, Kawata S. Gold-bead scanning near-field optical microscope with laser-force position control. Opt Lett 1997;22:1663–5.Google Scholar

[67]

Lazarev A, Fang N, Luo Q, Zhang X. Formation of fine near-field scanning optical microscopy tips. Part II. By laser-heated pulling and bending. Rev Sci Instrum 2003;74:3684–8.Google Scholar

[68]

Lazarev A, Fang N, Luo Q, Zhang X. Formation of fine near-field scanning optical microscopy tips. Part I. By static and dynamic chemical etching. Rev Sci Instrum 2003;74:3679–83.Google Scholar

[69]

Ekvall I, Wahlstrom E, Claesson D, Olin H, Olsson E. Preparation and characterization of electrochemically etched W tips for STM. Meas Sci Technol 1999;10:11–8.Google Scholar

[70]

Merlo JM, Aguilar JF, González-Hernández H, Caballero NA. Properties of the near field interactions produced by spherical nanoparticles. Proc of SPIE 2011;8011:801141–7.Google Scholar

[71]

Ichimura T, Fujii S, Verma P, Yano T, Inouye Y, Kawata S. Subnanometric near-field Raman investigation in the vicinity of a metallic nanostructure. Phys Rev Lett 2009;102:186101.Google Scholar

[72]

Koev ST, Agrawal A, Lezec HJ, Aksyuk VA. An efficient large-area grating coupler for surface plasmon polaritons. Plasmonics 2012;7:269–77.Google Scholar

[73]

Hecht B, Bielefeldt H, Pohl DW, Novotny L, Heinzelmann H. Influence of detection conditions on near-field optical imaging. J Appl Phys 1998;84:5873–82.Google Scholar

[74]

Cao L, Nome RA, Montgomery JM, Gray SK, Scherer NF. Controlling plasmonic wave packets in silver nanowires. Nano Lett 2010;10:3389–94.Google Scholar

[75]

Costantini D, Greusard L, Bousseksou A, Rungsawang R, Zhang TP, Callard S, Decobert J, Lelarge F, Duan G-H, De Wilde Y, Colombelli R. In situ generation of surface plasmon polaritons using a near-infrared laser diode. Nano Lett 2012;12:4693–7.Google Scholar

[76]

Gjonaj B, Aulbach J, Johnson PM, Mosk AP, Kuipers L, Lagendijk A. Optical control of plasmonic Bloch modes on periodic nanostructures. Nano Lett 2012;12:546–50.Google Scholar

[77]

Kwak E-S, Henzie J, Chang S-H, Gray SK, Schatz GC, Odom TW. Surface plasmon standing waves in large-area subwavelength hole arrays. Nano Lett 2005;5:1963–7.Google Scholar

[78]

Liu Z, Steele JM, Srituravanich W, Pikus Y, Sun C, Zhang X. Focusing surface plasmons with a plasmonic lens. Nano Lett 2005;5:1726–9.Google Scholar

[79]

Babayan Y, McMahon JM, Li S, Gray SK, Schatz GC, Odom TW. Confining standing waves in optical corrals. ACS Nano 2009;3:615–20.Google Scholar

[80]

Crommie MF, Lutz CP, Eigler DM. Confinement of electrons to quantum corrals on a metal surface. Science 1993;262: 218–20.Google Scholar

[81]

Fiete GA, Heller EJ. Colloquium: theory of quantum corrals and quantum mirages. Rev Mod Phys 2003;75:933–48.Google Scholar

[82]

Fang Z, Peng Q, Song W, Hao F, Wang J, Nordlander P, Zhu X. Plasmonic focusing in symmetry broken nanocorrals. Nano Lett 2011;11:893–7.Google Scholar

[83]

Lin J, Balthasar Mueller JP, Wang Q, Yuan G, Antoniou N, Yuan X-C, Capasso F. Polarization-controlled tunable directional coupling of surface plasmon polaritons. Science 2013;340:331–4.Google Scholar

[84]

Ditlbacher H, Krenn JR, Felidj N, Lamprecht B, Schider G, Salerno M, Leitner A, Aussenegg FR. Fluorescence imaging of surface plasmon fields. Appl Phys Lett 2002;80:404–6.Google Scholar

[85]

Zhang S, Wei H, Bao K, Hakanson U, Halas NJ,Nordlander P, Xu H. Chiral surface plasmon polaritons on metallic nanowires. Phys Rev Lett 2011;107:096801.Google Scholar

[86]

Kramer A, Trabesinger W, Hecht B, Wild UP. Optical near-field enhancement at a metal tip probed by a single fluorophore. Appl Phys Lett 2002;80:1652–4.Google Scholar

[87]

Dulkeith E, Ringler M, Klar TA, Feldmann J. Gold nanoparticels quench fluorescence by phase induced radiative rate suppression. Nano Lett 2005;5:585–9.Google Scholar

[88]

Anger P, Bharadwaj P, Novotny L. Enhancement and quenching of single-molecule fluorescence. Phys Rev Lett 2006;96:113002.Google Scholar

[89]

Wei H, Li Z, Tian X, Wang Z, Cong F, Liu N, Zhang S, Nordlander P, Halas NJ, Xu H. Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks. Nano Lett 2011;11:471–5.Google Scholar

[90]

Wei H, Zhang S, Tian X, Xu H. Highly tunable propagating surface plasmons on supported silver nanowires. PNAS 2013;110:4494–9.Google Scholar

[91]

Pennycook SJ, Nellist PD, editors. Scanning transmission electron microscopy: imaging and analysis. New York: Springer, 2011.Google Scholar

[92]

Hillier J, Baker RF. Microanalysis by means of electrons. J Appl Phys 1944;15:663–75.Google Scholar

[93]

Nelayah J, Kociak M, Stephan O, Garcia de Abajo FJ, Tence M, Henrard L, Taverna D, Pastoriza-Santos I, Liz-Marzan LM,
Colliex C. Mapping surface plasmons on a single metallic nanoparticle. Nature Phys 2007;3:348–53.Google Scholar

[94]

Werner WSM. Dielectric function of Cu, Ag, and Au obtained from reflection electron energy loss spectra, optical measurements, and density functional theory. Appl Phys Lett 2006;89:213106.Google Scholar

[95]

Werner WSM, Went MR, Vos M. Surface plasmon excitation at a Au surface by 150–40000 eV electrons. Surf Sci 2007;601:L109–13.Google Scholar

[96]

Went MR, Vos M, Werner WSM. Extracting the Ag surface and volume loss functions from reflection electron energy loss spectra. Surf Sci 2008;602:2069–77.Google Scholar

[97]

Koh AL, Bao K, Khan I, Smith WE, Kothleitner G, Nordlander P, Maier SA, McComb DW. Electron energy-loss spectroscopy (EELS) of surface plasmons in single silver nanoparticles and dimmers: influence of beam damage and mapping of dark modes. ACS nano 2009;3:3015–22.Google Scholar

[98]

Kuttge M. Cathodoluminescence plasmon microscopy. The Netherlands: Utrecht University, 2009.Google Scholar

[99]

Kumar A. Cathodoluminescence spectroscopy. Urbana Champaign: University of Illinois, 2010.Google Scholar

[100]

Kuttge M, Vesseur EJR, Koenderink AF, Lezec HJ, Atwater HA, García de Abajo FJ, Polman A. Local density of states, spectrum and far-field interference of surface plasmon polaritons probed by cathodoluminescence. Phys Rev B 2009;79:113405.Google Scholar

[101]

Ginzburg VL, Frank IM. On the transition radiation theory. Sov Phys JETP 1946;16:15.Google Scholar

[102]

Goldsmith P, Jelley JV. Optical transition radiation from protons entering metal surfaces. Philos Mag 1959;4:836–44.Google Scholar

[103]

Barnard ES, Coenen T, Vesseur EJR, Polman A, Brongersma ML. Imaging the hidden modes of ultrathin plasmonic strip antennas by cathodoluminescence. Nano Lett 2011;11:4265–9.Google Scholar

[104]

Zhu X, Zhang Y, Zhang J, Xu J, Ma Y, Li Z, Yu D. Ultrafine and smooth full metal nanostructures for plasmonics. Adv Mat 2010;22:4345–9.Google Scholar

[105]

Zhu X, Zhang J, Xu J, Li H, Wu X, Liao Z, Zhao Q, Yu D. Dispersion control in plasmonic open nanocavities. ACS Nano 2011;5:6546–52.Google Scholar

[106]

Zhu X, Zhang J, Xu J, Yu D. Vertical plasmonic resonant nanocavities. Nano Lett 2011;11:1117–21.Google Scholar

[107]

Vesseur EJR, Garcia de Abajo FJ, Polman A. Modal decomposition of surface-plasmon whispering gallery resonators. Nano Lett 2009;9:3147–50.Google Scholar

[108]

Vesseur EJR, Polman A. Plasmonic whispering gallery cavities as optical nanoantennas. Nano Lett 2011;11:5524–30.Google Scholar

[109]

Schoen DT, Coenen T, García de Abajo FJ, Brongersma ML, Polman A. The planar parabolic optical antenna. Nano Lett 2013;13:188–93.Google Scholar

[110]

Sapienza R, Coenen T, Renger J, Kuttge M, van Hulst NF, Polman A. Deep-subwavelength imaging of the modal dispersion of light. Nature Mat 2012;11:781–7.Google Scholar