[1]
Nepomnyashchii AB, Kolesov G, Parkinson BA. Electrogenerated chemiluminescence of BODIPY, Ru(bpy)32+, and 9,10-diphenylanthracene using interdigitated array electrodes. ACS Appl Mater Interfaces 2013;5:5931–6.Google Scholar
[2]
Ma H, Li X, Yan T, et al. Sensitive insulin detection based on electrogenerated chemiluminescence resonance energy transfer between Ru(bpy)32+ and Au nanoparticle-doped-cyclodextrin-Pb (II) metal organic framework. ACS Appl Mater Interfaces 2016;8:10121–7.Google Scholar
[3]
Zhuang Y, Ju H. Determination of reduced nicotinamide adenine dinucleotide based on immobilization of tris(2,2′-bipyridyl) ruthenium(II) in multiwall carbon nanotubes/Nafion composite membrane. Anal Lett 2005;38:2077–88.Google Scholar
[4]
Sun X, Du Y, Dong S, Wang E. Method for effective immobilization of Ru(bpy)32+ on an electrode surface for solid-state electrochemiluminescene detection. Anal Chem 2005;77:8166–9.Google Scholar
[5]
Qian L, Yang XR. One-step synthesis of Ru(2,2′-bipyridine)3Cl2-immobilized silica nanoparticles for use in electrogenerated chemiluminescence detection. Adv Funct Mater 2007;17:1353–8.Google Scholar
[6]
Bertoncello P, Stewart AJ, Dennany L. Analytical applications of nanomaterials in electrogenerated chemiluminescence. Anal Bioanal Chem 2014;406:5573–87.Google Scholar
[7]
Spehar-Délèze A-M, Almadaghi S, Sullivan C. Development of solid-state electrochemiluminescence (ECL) sensor based on Ru(bpy)32+-encapsulated silica nanoparticles for the detection of biogenic polyamines. Chemosensors 2015;3:178–89.Google Scholar
[8]
Hosseini M, Moghaddam MR, Faridbod F, Norouzi P, Pur MRK, Ganjali MR. A novel solid-state electrochemiluminescence sensor based on a Ru(bpy)32+/nano Sm2O3 modified carbon paste electrode for the determination of l-proline. RSC Adv 2015;5:64669–74.Google Scholar
[9]
Pur MRK, Hosseini M, Faridbod F, Dezfuli AS, Ganjali MR. A novel solid-state electrochemiluminescence sensor for detection of cytochrome c based on ceria nanoparticles decorated with reduced graphene oxide nanocomposite. Anal Bioanal Chem 2016;408:7193–202.Google Scholar
[10]
Zhang A, Miao C, Shi H, Xiang H, Huang C, Jia N. A novel solid-state electrochemiluminescence sensor for atropine determination based on Ru(bpy)32+/carbon nanospheres/Nafion composite film. Sens Actuators B 2016;222:433–9.Google Scholar
[11]
Gerardi RD, Barnett NW, Lewis AW. Analytical applications of tris(2,2′-bipyridyl)ruthenium(III) as a chemiluminescent reagent. Anal Chim Acta 1999;378:1–41.Google Scholar
[12]
Bumajdad A, Madkour M. Understanding the superior photocatalytic activity of noble metals modified titania under UV and visible light irradiation. Phys Chem Chem Phys 2014;16: 7146–58.Google Scholar
[13]
Al-Hetlani E, Amin MO, Madkour M. Detachable photocatalysts of anatase TiO2 nanoparticles: annulling surface charge for immediate photocatalyst separation. Appl Surf Sci 2017;411:355–62.Google Scholar
[14]
Sivaram V, Crossland EJW, Leijtens T, et al. Observation of annealing-induced doping in TiO2 mesoporous single crystals for use in solid state sye sensitized solar cells. J Phys Chem C 2014;118:1821–7.Google Scholar
[15]
Barakat NAM, Nassar MM, Farrag TE, Mahmoud MS. Effective photodegradation of methomyl pesticide in concentrated solutions by novel enhancement of the photocatalytic activity of TiO2 using CdSO4 nanoparticles. Environ Sci Pollut Res 2014;21:1425–35.Google Scholar
[16]
Wu B, Liu D, Mubeen S, Chuong TT, Moskovits M, Stucky GD. Anisotropic growth of TiO2 onto gold nanorods for plasmon-enhanced hydrogen production from water reduction. J Am Chem Soc 2016;138:1114–7.Google Scholar
[17]
Choi HN, Cho S-H, Lee W-Y. Electrogenerated chemiluminescence from tris(2,2′-bipyridyl)ruthenium(II) immobilized in titania perfluorosulfonated ionomer composite films. Anal Chem 2003;75:4250–6.Google Scholar
[18]
Choi HN, Yoon SH, Lyu Y-K, Lee W-Y. Electrogenerated chemiluminescence ethanol biosensor based on carbon nanotube-titania-Nafion composite film. Electroanalysis 2007;19:459–65.Google Scholar
[19]
Xu Z, Yu J. A novel solid-state electrochemiluminescence sensor based on Ru(bpy)32+ immobilization on TiO2 nanotube arrays and its application for detection of amines in water. Nanotechnology 2010;21:245501.Google Scholar
[20]
Amjadi M, Hallaj T. Dramatic enhancement effect of carbon quantum dots on the chemiluminescence of –Ce(IV) reaction and application to the determination of 4-nitrophenol. J Lumin 2016;171:202–7.Google Scholar
[21]
Gorman BA, Francis PS, Dunstan DE, Barnett NW. Tris(2,2′-bipyridyl)ruthenium(II) chemiluminescence enhanced by silver nanoparticles. Chem Commun 2007;395–7.Google Scholar
[22]
Innocenzi P, Kozuka H, Yoko T. Fluorescence properties of the Ru(bpy)32+ complex incorporated in sol-gel-derived silica coating films. J Phys Chem B 1997;101:2285–91.Google Scholar
[23]
Zang L, Rodgers MAJ. Diffusion-controlled charge transfer from excited Ru(bpy)32+ into nanosized TiO2 colloids stabilized with EDTA. J Phys Chem B 2000;104:468–74.Google Scholar
[24]
Chen X, Lou YB, Samia ACS, Burda C, Gole JL. Formation of oxynitride as the photocatalytic enhancing site in nitrogen-doped titania nanocatalysts: comparison to a commercial nanopowder. Adv Funct Mater 2005;15:41–9.Google Scholar
[25]
Silverstein DW, Milojevich CB, Camden JP, Jensen L. Investigation of linear and nonlinear Raman scattering for isotopologues of Ru(bpy)32+. J Phys Chem C 2013;117:20855–66.Google Scholar
[26]
Barnett W, Bowser TA, Gerardi RD, Smith B. Determination of codeine in process streams using flow-injection analysis with chemiluminescence detection. Anal Chim Acta 1996;318:309–17.Google Scholar
[27]
Barnett NW, Lewis SW, Purcell SD, Jones P. Determination of sodium oxalate in Bayer liquor using flow-analysis incorporating an anion exchange column and tris(2,2′-bipyridyl)ruthenium(II) chemiluminescence detection. Anal Chim Acta 2002;458:291–6.Google Scholar
[28]
Holmes RP, Kennedy M. Estimation of the oxalate content of foods and daily oxalate intake. Kidney Int 2000;57:1662–7.Google Scholar
[29]
Cao LC, Jonassen J, Honeyman TW, Scheid C. Oxalate-induced redistribution of phosphatidylserine in renal epithelial cells. Am J Nephrol 2001;21:69–77.Google Scholar
[30]
Ermer T, Eckardt K-U, Aronson PS, Knauf F. Oxalate, inflammasome, and progression of kidney disease. Curr Opin Nephrol Hypertens 2016;25:363–71.Google Scholar
[31]
Lee W-Y, Nieman TA. Effect of organic solvent on tris(2,2′-bipyridyl)ruthenium(III) chemiluminescent reactions in flowing streams. Anal Chim Acta 1996;334:183–91.Google Scholar
[32]
Skotty R, Lee W-Y, Nieman TA. Determination of dansyl amino acids and oxalate by HPLC with electrogenerated chemiluminescence detection using tris(2,2′-bipyridyl)ruthenium(II) in the mobile phase. Anal Chem 1996;68:1530–5.Google Scholar
[33]
Chiu M-H, Wu H, Chen J-C, Muthuraman G, Zen J-M. Disposable screen-printed carbon electrodes for dual electrochemiluminescence/amperometric detection: sequential injection analysis of oxalate. Electroanalysis 2007;19:2301–6.Google Scholar
[34]
Rubinstein I, Bard AJ. Electrogenerated chemiluminescence. 37. Aqueous ecl systems based on tris(2,2′-bipyridine)ruthenium(2+) and oxalate or organic acids. J Am Chem Soc 1981;103:512–6.Google Scholar
[35]
Rubinstein I, Martin CR, Bard AJ. Electrogenerated chemiluminescent determination of oxalate. Anal Chem 1983;55:1580–2.Google Scholar
[36]
He Z, Gao H. Simultaneous determination of oxalic and tartaric acid with chemiluminescence detection. Analyst 1997;122:1343–6.Google Scholar
[37]
Wu F, He Z, Luo Q, Zeng YE. HPLC determination of oxalic acid using tris(1,10-phenanthroline)ruthenium(II) chemiluminescence–application to the analysis of spinach. Food Chem 1999;65:543–6.Google Scholar
[38]
Lee W-Y, Nieman TA. Evaluation of use of tris(2,2′-bipyridyl)ruthenium(III) as a chemiluminescent reagent for quantitation in flowing streams. Anal Chem 1995;67:1789–96.Google Scholar
[39]
de Toledo RA, Santos MC, Honório KM, da Silva ABF, Cavalheiro ETG, Mazo LH. Use of graphite polyurethane composite electrode for imipramine oxidation–mechanism proposal and electroanalytical determination. Anal Lett 2006;39:507–20.Google Scholar
[40]
Lara FJ, García-Campaña AM, Alés-Barrero F, Bosque-Sendra JM. Determination of thiazinamium, promazine and promethazine in pharmaceutical formulations using a CZE method. Anal Chim Acta 2005;535:101–8.Google Scholar
[41]
Safavi A, Banazadeh A, Sedaghati F. Synthesis of palladium nanoparticles on organically modified silica: application to design of a solid-state electrochemiluminescence sensor for highly sensitive determination of imipramine. Anal Chim Acta 2013;796:115–21.Google Scholar
[42]
Ensafi AA, Hasanpour F, Khayamian T. Simultaneous chemiluminescence determination of promazine and fluphenazine using support vector regression. Talanta 2009;79:534–8.Google Scholar