[1]
Betzig E, Trautman JK. Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit. Science 1992;257:189–95.Google Scholar
[2]
Betzig E, Chichester RJ. Single molecules observed by near-field scanning optical microscopy. Science 1993;262:1422–5.Google Scholar
[3]
Trautman JK, Macklin JJ, Brus LE, Betzig E. Near-field spectroscopy of single molecules at room temperature. Nature 1994;369:40–2.Google Scholar
[4]
Dunn RC, Allen EV, Joyce SA, Anderson GA, Xie XS. Near-field fluorescent imaging of single proteins. Ultramicroscopy 1995;57:113–7.Google Scholar
[5]
Xie XS. Single-molecule spectroscopy and dynamics at room temperature. Acc Chem Res 1996;29:598–606.Google Scholar
[6]
Lewis A, Radko A, Ami NB, Palanker, D, Lieberman K. Near-field scanning optical microscopy in cell biology. Trends Cell Biol 1999;9:70–3.Google Scholar
[7]
Lewis A, Taha H, Strinkovski A, Manevitch A, Khatchatouriants A, Dekhter R, Ammann E. Near-field optics: from subwavelength illumination to nanometric shadowing. Nat Biotech 2003;21:1378–86.Google Scholar
[8]
Huang B, Bates M, Zhuang X. Super-resolution fluorescence microscopy. Annu Rev Biochem 2009;78:993–1016.Google Scholar
[9]
Jiménez JL, Guijarro JI, Orlova E, Zurdo J, Dobson CM, Sunde M, Saibil HR. Cryo-electron microscopy structure of an SH3 amyloid fibril and model of the molecular packing. EMBO J 1999;18:815–21.Google Scholar
[10]
Schmidt M, Sachse C, Richter W, Xu C, Fändrich M, Grigorieff N. Comparison of Alzheimer Aβ (1–40) and Aβ (1–42) amyloid fibrils reveals similar protofilament structures. Proc Natl Acad Sci USA 2009;106:19813–8.Google Scholar
[11]
Ban T, Yamaguchi K, Goto Y. Direct observation of amyloid fibril growth, propagation, and adaptation. Acc Chem Res 2006;39:663–70.Google Scholar
[12]
Connelly L, Jang H, Arce FT, Ramachandran S, Kagan BL, Nussinov R, Lal R. Effects of point substitutions on the structure of toxic Alzheimer’s β-amyloid channels: atomic force microscopy and molecular dynamics simulations. Biochemistry 2012;51:3031–8.Google Scholar
[13]
Bhattacharya M, Jain N, Dogra P, Samai S, Mukhopadhyay S. Nanoscopic amyloid pores formed via stepwise protein assembly. J Phys Chem Lett 2013;4:480–5.Google Scholar
[14]
Hell SW. Far-field optical nanoscopy. Science 2007;316:1153–8.Google Scholar
[15]
McBride D, Su C, Kameoka J, Vitha S. A low cost and versatile STED superresolution fluorescent microscope. Modern Instrum 2013;2:41–8.Google Scholar
[16]
Gustafsson MGL. Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proc Natl Acad Sci USA 2005;102:13081–6.Google Scholar
[17]
Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF. Imaging intracellular fluorescent proteins at nanometer resolution. Science 2006;313:1642–5.Google Scholar
[18]
Hess ST, Girirajan TPK, Mason MD. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J 2006;91:4258–72.Google Scholar
[19]
Rust MJ, Bates M, Zhuang X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 2006;3:793–6.Google Scholar
[20]
Heilemann M, van de Linde S, Schüttpelz M, Kasper R, Seefeldt B, Mukherjee A, Tinnefeld P, Sauer M. Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew Chem Int Ed Engl 2008;47:6172–6.Google Scholar
[21]
Zenhausern F, O’Boyle MP, Wickramasinghe HK. Apertureless near-field optical microscope. Appl Phys Lett 1994;65:1623–5.Google Scholar
[22]
Paulite M, Fakhraai Z, Li ITS, Gunari N, Tanur AE, Walker GC. Imaging secondary structure of individual amyloid fibrils of a β2-microglobulin fragment using near-field infrared spectroscopy. J Am Chem Soc 2011;133:7376–83.Google Scholar
[23]
Perney NM, Braddick L, Jurna M, Garbacik ET, Offerhaus HL, Serpell LC, Blanch E, Holden-Dye L, Brocklesby WS, Melvin T. Polyglutamine aggregate structure in vitro and in vivo; new avenues for coherent anti-Stokes Raman scattering microscopy. PLoS One 2012;7:e40536.Google Scholar
[24]
Deckert-Gaudig T, Deckert V. Tip-enhanced Raman scattering (TERS) and high-resolution bio nano – analysis-a comparison. Phys Chem Chem Phys 2010;12:12040–9.Google Scholar
[25]
Deckert-Gaudig T, Kämmer E, Deckert V. Tracking of nanoscale structural variations on a single amyloid fibril with tip-enhanced Raman scattering. J Biophotonics 2012;5:215–9.Google Scholar
[26]
Krasnoslobodtsev AV, Portillo AM, Deckert-Gaudig T, Deckert V, Lyubchenko YL. Nanoimaging for prion related diseases. Prion 2010;4:265–74.Google Scholar
[27]
Moretti M, Zaccaria RP, Descrovi E, Das G, Leoncini M, Liberale C, de Angelis F, di Fabrizio E. Reflection-mode TERS on insulin amyloid fibrils with top-visual AFM probes. Plasmonics 2013;8:25–33.Google Scholar
[28]
Harke B, Chacko JV, Haschke H, Canale C, Diaspro A. A novel nanoscopic tool by combining AFM with STED microscopy. Optical Nanoscopy 2012;1:3.Google Scholar
[29]
Luheshi LM, Crowther DC, Dobson CM. Protein misfolding and disease: from the test tube to the organism. Curr Opin Chem Biol 2008;12:25–31.Google Scholar
[30]
Jahn TR, Radford SE. Folding versus aggregation: polypeptide conformations on competing pathways. Arch Biochem Biophys 2008;469:100–17.Google Scholar
[31]
Kumar S, Udgaonkar JB. Mechanisms of amyloid fibril formation by proteins. Curr Sci 2010;98:639–56.Google Scholar
[32]
Petkova AT, Yau W-M, Tycko R. Experimental constraints on quaternary structure in Alzheimer’s β-amyloid fibrils. Biochemistry 2006;45:498–512.Google Scholar
[33]
Eisenberg D, Jucker M. The amyloid state of proteins in human diseases. Cell 2012;148:1188–203.Google Scholar
[34]
Adamcik J, Mezzenga R. Proteins fibrils from a polymer physics perspective. Macromolecules 2012;45:1137–50.Google Scholar
[35]
Hebda JA, Miranker AD. The interplay of catalysis and toxicity by amyloid intermediates on lipid bilayers: insights from type II diabetes. Annu Rev Biophys 2009;38:125–52.Google Scholar
[36]
Aisenbrey C, Borowik T, Byström R, Bokvist M, Lindström F, Misiak H, Sani MA, Gröbner G. How is protein aggregation in amyloidogenic diseases modulated by biological membranes. Eur Biophys J 2008;37:247–55.Google Scholar
[37]
Kinnunen PKJ. Amyloid formation on lipid membrane surfaces. Open Biol J 2009;2:163–75.Google Scholar
[38]
Friedman R, Pellarin R, Caflisch A. Amyloid aggregation on lipid bilayers and its impact on membrane permability. J Mol Biol 2009;387:407–15.Google Scholar
[39]
Krishnan R, Lindquist SL. Structural insights into a yeast prion illuminate nucleation and strain diversity. Nature 2005;435:765–72.Google Scholar
[40]
Fändrich M, Meinhardt J, Grigorieff N. Structural polymorphism of Alzheimer Abeta and other amyloid fibrils. Prion 2009;3: 89–93.Google Scholar
[41]
Hu KN, Mcglinchey RP, Wickner RB, Tycko R. Segmental polymorphism in a functional amyloid. Biophys J 2011;101:2242–50.Google Scholar
[42]
Kitts CC, Bout DAV. Near-field scanning optical microscopy measurements of fluorescent molecular probes binding to insulin amyloid fibrils. J Phys Chem B 2009;113:12090–5.Google Scholar
[43]
Dalal V, Bhattacharya M, Narang D, Sharma PK, Mukhopadhyay S. Nanoscale fluorescence imaging of single amyloid fibrils. J Phys Chem Lett 2012;3:1783–7.Google Scholar
[44]
Nilsson MR. Techniques to study amyloid fibril formation in vitro. Methods 2004;34:151–60.Google Scholar
[45]
Khurana R, Coleman C, Ionescu-Zanetti C, Carter SA, Krishna V, Grover RK, Roy R, Singh S. Mechanism of thioflavin T binding to amyloid fibrils. J Struct Biol 2005;151:229–38.Google Scholar
[46]
Sulatskaya AI, Maskevich AA, Kuznetsova IM, Uversky VN, Turoverov KK. Fluorescence quantum yield of Thioflavin T in rigid isotropic solution and incorporated into the amyloid fibrils. PLoS One 2010;5:e15385.Google Scholar
[47]
Mishra R, Sjölander D, Hammarström P. Spectroscopic characterization of diverse amyloid fibrils in vitro by the fluorescent dye Nile Red. Mol Biosyst 2011;7:1232–40.Google Scholar
[48]
Kurousky D, Deckert-Gaudig T, Deckert V, Lednev IK. Structure and composition of insulin fibril surfaces probed by TERS. J Am Chem Soc 2012;134:13323–9.Google Scholar