[1]

Planck M., The theory of heat radiation, P. Blackston’s sons co (1914).Google Scholar

[2]

Landau L., Lifshitz E., Statistical Physics, Part 1, Course Theor. Physics, vol. 5, Institute of Physical Problems, USSR Academy of Sciences, Moscow (1980).Google Scholar

[3]

Landsberg P. T., Tonge G., Thermodynamic energy conversion efficiencies, J. Appl. Phys. 51(7), R1–R20 (1980).Google Scholar

[4]

Ruppel W., Wurfel P., Upper limit for the conversion of solar energy, IEEE Trans. Electron Dev. 27(4), 877–882 (1980).Google Scholar

[5]

De Vos A., Pauwels H., On the thermodynamic limit of photovoltaic energy conversion, Appl. Phys. A Mater. Sci. Process. 25(2), 119–125, Springer Berlin / Heidelberg (1981).Google Scholar

[6]

Landau L., On the thermodynamics of photoluminescence, J. Phys. 10, 503–506 (1946).Google Scholar

[7]

Rytov S. M. M., Theory of electric fluctuations and thermal radiation, Air Force Cambridge Research Center, Bedford, MA (1959).Google Scholar

[8]

Rytov S. M., Kravtsov Y. A.., Tatarskii V. I., Principles of statistical radiophysics, Springer-Verlag, New York (1987).Google Scholar

[9]

Wurfel P., The chemical potential of radiation, J. Phys. C Solid State Phys. 15(18), 3967, IOP Publishing (1982).Google Scholar

[10]

Wurfel P., Ruppel W., The flow equilibrium of a body in a radiation field, J. Phys. C Solid State Phys. 18(15), 2987–3000, IOP Publishing (1985).Google Scholar

[11]

Ries H., Thermodynamics of Quantum Conversion of Light, Zeitschrift für Phys. Chemie 1(1), 133–140 (1998).Google Scholar

[12]

Rousseau E., Siria A., Jourdan G., Volz S., Comin F., Chevrier J., Greffet J.-J., Radiative heat transfer at the nanoscale, Nat Phot. 3(9), 514–517, Nature Publishing Group (2009).Google Scholar

[13]

Song B., Fiorino A., Meyhofer E., Reddy P., Near-field radiative thermal transport: From theory to experiment, AIP Adv. 5(5), 053503, AIP Publishing (2015).Google Scholar

[14]

Bermel P., Boriskina S. V., Yu Z., Joulain K., Control of radiative processes for energy conversion and harvesting, Opt. Express 23(24), A1533–A1540, Optical Society of America (2015).Google Scholar

[15]

Boriskina S. V., Green M. A., Catchpole K., Yablonovitch E., Beard M. C., Okada Y., Lany S., Gershon T., Zakutayev A., et al., Roadmap on optical energy conversion, J. Opt. (2016).Google Scholar

[16]

Inoue T., De Zoysa M., Asano T., Noda S., Realization of narrowband thermal emission with optical nanostructures, Optica 2(1), 27, Optical Society of America (2015).Google Scholar

[17]

Levi A. F. J., Applied quantum mechanics, Cambridge Univ. Press (2006).Google Scholar

[18]

Chen G., Nanoscale energy transfer and conversion, Oxford University Press (2005).Google Scholar

[19]

Allen L., Padgett M. J., Babiker M., Wolf E., IV The Orbital Angular Momentum of Light, [Progress in Optics], Elsevier, 291–372 (1999).Google Scholar

[20]

Mazilu M., Optical eigenmodes; spin and angular momentum, J. Opt. 13(6), 064009, IOP Publishing (2011).Google Scholar

[21]

Bliokh K. Y., Rodriguez-Fortuno F. J., Nori F., Zayats A. V., Spinorbit interactions of light, Optics, 23 (2015).Google Scholar

[22]

Yablonovitch E., Statistical ray optics, J. Opt. Soc. Am. 72(7), 899–907 (1982).Google Scholar

[23]

Landsberg P. T., Photons at non-zero chemical potential, J. Phys. C Solid State Phys. 14(32), L1025–L1027, IOP Publishing (1981).Google Scholar

[24]

Ries H., Mcevoy A. J. J., Rles H., Mcevoy A. J. J., Chemical potential and temperature of light aFA, J. Photochem. Photobiol. A Chem. 59(1), 11–18 (1991).Google Scholar

[25]

Badescu V., Time-dependent and steady-state statistics of photons at nonzero chemical potential, J. Phys. Condens. Matter 3(33), 6509–6521, IOP Publishing (1991).Google Scholar

[26]

Green M. A., Third Generation Photovoltaics: Advanced Solar Energy Conversion (Springer Series in Photonics), Springer (2005).Google Scholar

[27]

Klaers J., Schmitt J., Vewinger F., Weitz M., Bose-Einstein condensation of photons in an optical microcavity., Nature 468(7323), 545–548, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. (2010).Google Scholar

[28]

Green M., Energy, entropy and efficiency, [Third Generation Photovoltaics], T. Kamiya, B. Monemar and H. Venghaus, Eds., Springer Berlin Heidelberg, 21–34 (2006).Google Scholar

[29]

Henry C. H., Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells, J. Appl. Phys. 51(8), 4494–4500 (1980).Google Scholar

[30]

Markvart T., The thermodynamics of optical étendue, J. Opt. A Pure Appl. Opt. 10(1), 015008 (2008).Google Scholar

[31]

Hafezi M., Adhikari P., Taylor J. M., A chemical potential for light, Quantum Physics; Statistical Mechanics; Optics, 7 (2014).Google Scholar

[32]

Shockley W., Queisser H. J., Detailed balance limit of efficiency of p-n junction solar cells, J. Appl. Phys. 32(3), 510–519 (1961).Google Scholar

[33]

Harder P. N., Green M. A., Thermophotonics, Semicond. Sci. Technol. 18(5), S270 (2003).Google Scholar

[34]

Farrell D. J., Sodabanlu H., Wang Y., Sugiyama M., Okada Y., Can a Hot-Carrier Solar Cell also be an Efficient Upconverter?, IEEE J. Photovoltaics 5(2), 571–576 (2015).Google Scholar

[35]

Farrell D. J., Sodabanlu H., Wang Y., Sugiyama M., Okada Y., A hot-electron thermophotonic solar cell demonstrated by thermal up-conversion of sub-bandgap photons., Nat. Commun. 6, 8685, Nature Publishing Group (2015).Google Scholar

[36]

Xue J., Zhao Y., Oh S.-H., Herrington W. F., Speck J. S., Den-Baars S. P., Nakamura S., Ram R. J., Thermally enhanced blue light-emitting diode, Appl. Phys. Lett. 107(12), 121109, AIP Publishing (2015).Google Scholar

[37]

Strandberg R., Theoretical efficiency limits for thermoradiative energy conversion, J. Appl. Phys. 117(5), 055105, AIP Publishing (2015).Google Scholar

[38]

Ross R. T., Nozik A. J., Efficiency of hot-carrier solar energy converters, J. Appl. Phys. 53(5), 3813, American Institute of Physics (1982).Google Scholar

[39]

Joshi S., Moddel G., Efficiency limits of rectenna solar cells: Theory of broadband photon-assisted tunneling, Appl. Phys. Lett. 102(8), 083901, AIP Publishing (2013).Google Scholar

[40]

Lerner P. B., Miskovsky N. M., Cutler P. H., Mayer A., Chung M. S., Thermodynamic analysis of high frequency rectifying devices: Determination of the efficiency and other performance parameters, Nano Energy 2(3), 368–376 (2013).Google Scholar

[41]

Ruan X. L., Rand S. C., Kaviany M., Entropy and efficiency in laser cooling of solids, Phys. Rev. B 75(21), 214304 (2007).Google Scholar

[42]

Epstein R. I., Buchwald M. I., Edwards B. C., Gosnell T. R.., Mungan C. E., Observation of laser-induced fluorescent cooling of a solid, Nature 377(6549), 500–503 (1995).Google Scholar

[43]

Mashaal H., Gordon J. M., Basic limit for the efficiency of coherence-limited solar power conversion, Opt. Lett. 39(17), 5130–5133, Optical Society of America (2014).Google Scholar

[44]

Landsberg P. T., Evans D. A., Thermodynamic Limits for Some Light-Producing Devices, Phys. Rev. 166(2), 242–246, American Physical Society (1968).Google Scholar

[45]

Gordon J. M., A simple derivation of work and efficiency limits for blackbody radiation converters, Am. J. Phys. 61(9), 821, American Association of Physics Teachers (1993).Google Scholar

[46]

Boriskina S. V., Tong J. K., Ferry V. E., Michel J., Kildishev A. V., Breaking the limits of optical energy conversion, Opt. Photonics News(July/Aug), 50–53 (2015).Google Scholar

[47]

Alharbi F. H., Kais S., Theoretical limits of photovoltaics efficiency and possible improvements by intuitive approaches learned from photosynthesis and quantum coherence, Renew. Sustain. Energy Rev. 43, 1073–1089 (2015).Google Scholar

[48]

Luque A., Martí A., Theoretical limits of photovoltaic conversion, [Handbook of Photovoltaic Sci. Eng.], John Wiley & Sons, Ltd, 113–151 (2003).Google Scholar

[49]

Harder N.-P., Wurfel P., Theoretical limits of thermophotovoltaic solar energy conversion, Semicond. Sci. Tech. 18(5), S151 (2003).Google Scholar

[50]

Pringsheim P., Zwei Bemerkungen über den Unterschied von Lumineszenz und Temperaturstrahlung, Z. Phys. 57, 739–746 (1929).Google Scholar

[51]

Sheik-Bahae M., Epstein R. I., Optical refrigeration, Nat. Photonics 1(12), 693–699, Nature Publishing Group (2007).Google Scholar

[52]

Nemova G., Kashyap R., Laser cooling of solids, Reports Prog. Phys. 73(8), 086501 (2010).Google Scholar

[53]

Carnot N. L. S., Reflections on the motive power of heat (1824).Google Scholar

[54]

Ries H., Complete and reversible absorption of radiation, Appl. Phys. B Photophysics Laser Chem. 32(3), 153–156 (1983).Google Scholar

[55]

De Vos A., Pauwels H., Comment on a thermodynamical paradox presented by P. Wurfel, J. Phys. C Solid State Phys. 16(36), 6897 (1983).Google Scholar

[56]

Wurfel P., Physics of solar cells: from principles to new concepts, WILEY-VCH Verlag GmbH &Co. KGaA, Weinheim (2005).Google Scholar

[57]

Yu Z., Sandhu S., Fan S., Efficiency above the Shockley-Queisser limit by using nanophotonic effects to create multiple effective bandgaps with a single semiconductor., Nano Lett. 14(1), 66–70, American Chemical Society (2014).Google Scholar

[58]

Purcell E. M., Spontaneous emission probabilities at radio frequencies, Phys. Rev. 69(11-12), 674, American Physical Society (1946).Google Scholar

[59]

Bohren C. F., Huffman D. R., Absorption and scattering of light by small particles, Wiley-VCH 98, Weinheim, Germany (1983).Google Scholar

[60]

Luo C., Narayanaswamy A., Chen G., Joannopoulos J. D., Thermal Radiation from Photonic Crystals: A Direct Calculation, Phys. Rev. Lett. 93(21), 213905 (2004).Google Scholar

[61]

Joulain K., Mulet J.-P., Marquier F., Carminati R., Greffet J.-J., Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and Casimir forces revisited in the near field, Surf. Sci. Reports 57(3-4), 59–112 (2005).Google Scholar

[62]

Boriskina S. V., Tong J., Weinstein L., Hsu W.-C., Huang Y.., Chen G., Thermal emission shaping and radiative cooling with thermal wells, wires and dots, Adv. Photonics 2015, IT2A.3, OSA, Washington, D.C. (2015).Google Scholar

[63]

Boriskina S. V., Ghasemi H., Chen G., Plasmonic materials for energy: From physics to applications, Mater. Today 16(10), 375–386 (2013).Google Scholar

[64]

Khurgin Y., Improving the efficiency of laser cooling of semiconductors by means of bandgap engineering in electronic and photonic domains, [Optical refrigeration], R. I. Epstein and M. Sheik-Bahae, Eds., WILEY-VCH Verlag, 169–196 (2009).Google Scholar

[65]

Jacob Z., Smolyaninov I. I., Narimanov E. E., Broadband Purcell effect: Radiative decay engineering with metamaterials, Appl. Phys. Lett. 100(18), 181104–181105, AIP (2012).Google Scholar

[66]

Callahan D. M., Munday J. N., Atwater H. A., Solar cell light trapping beyond the ray optic limit, Nano Lett. 12(1), 214–218, American Chemical Society (2012).Google Scholar

[67]

van Roosbroeck W., Shockley W., Photon-Radiative Recombination of Electrons and Holes in Germanium, Phys. Rev. 94(6), 1558–1560 (1954).Google Scholar

[68]

Lasher G., Stern F., Spontaneous and Stimulated Recombination Radiation in Semiconductors, Phys. Rev. 133(2A), A553–A563 (1964).Google Scholar

[69]

Bhattacharya R., Pal B., Bansal B., On conversion of luminescence into absorption and the van Roosbroeck-Shockley relation, Appl. Phys. Lett. 100(22), 222103, AIP Publishing (2012).Google Scholar

[70]

De Zoysa M., Asano T., Mochizuki K., Oskooi A., Inoue T., Noda S., Conversion of broadband to narrowband thermal emission through energy recycling, Nat. Photonics 6(8), 535–539, Nature Publishing Group (2012).Google Scholar

[71]

Inoue T., De Zoysa M., Asano T., Noda S., Single-peak narrowbandwidth mid-infrared thermal emitters based on quantum wells and photonic crystals, Appl. Phys. Lett. 102(19), 191110, AIP Publishing (2013).Google Scholar

[72]

Boriskina S., Tong J., Huang Y., Zhou J., Chiloyan V., Chen G., Enhancement and Tunability of Near-Field Radiative Heat Transfer Mediated by Surface Plasmon Polaritons in Thin Plasmonic Films, Photonics 2(2), 659–683, Multidisciplinary Digital Publishing Institute (2015).Google Scholar

[73]

Manor A., Martin L. L., Rotschild C., Optical refrigeration for ultra-efficient photovoltaics, SPIE OPTO, R. I. Epstein, D. V. Seletskiy and M. Sheik-Bahae, Eds., 93800L, International Society for Optics and Photonics (2015).Google Scholar

[74]

Manor A., Martin L., Rotschild C., Conservation of photon rate in endothermic photoluminescence and its transition to thermal emission, Optica 2(6), 585, Optical Society of America (2015).Google Scholar

[75]

Yu Z. F., Raman A., Fan S. H., Fundamental limit of nanophotonic light trapping in solar cells, Proc. Natl. Acad. Sci. USA 107(41), 17491–17496 (2010).Google Scholar

[76]

Yu Z., Raman A., Fan S., Fundamental limit of light trapping in grating structures, Opt. Express 18(S3), A366–A380, OSA (2010).Google Scholar

[77]

Yu Z., Sergeant N. P., Skauli T. T., Zhang G., Wang H., Fan S., Enhancing far-field thermal emission with thermal extraction, Nat. Commun. 4, 1730, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved (2013).Google Scholar

[78]

Shi J., Liu B., Li P., Ng L. Y., Shen S., Near-field energy extraction with hyperbolic metamaterials, Nano Lett 15(2), 1217–1221, American Chemical Society (2015).Google Scholar

[79]

Biehs S.-A., Lang S., Petrov A. Y., Eich M., Ben-Abdallah P., Blackbody Theory for Hyperbolic Materials, Phys. Rev. Lett. 115(17), 174301 (2015).Google Scholar

[80]

Saeta P. N., Ferry V. E., Pacifici D., Munday J. N., Atwater H. A., How much can guided modes enhance absorption in thin solar cells?, Opt. Express 17(23), 20975–20990, OSA (2009).Google Scholar

[81]

Grandidier J., Callahan D. M., Munday J. N., Atwater H. A., Gallium Arsenide Solar Cell Absorption Enhancement Using Whispering Gallery Modes of Dielectric Nanospheres, IEEE J. Photovoltaics 2(2), 123–128 (2012).Google Scholar

[82]

Jacob Z., Kim J. Y., Naik G. V., Boltasseva A., Narimanov E. E., Shalaev V. M., Engineering photonic density of states using metamaterials, Appl. Phys. B 100(1), 215–218 (2010).Google Scholar

[83]

Shen S., Narayanaswamy A., Chen G., Surface phonon polaritons mediated energy transfer between nanoscale gaps., Nano Lett. 9(8), 2909–2913, American Chemical Society (2009).Google Scholar

[84]

Bohren C. F., How can a particle absorb more than the light incident on it?, Am. J. Phys. 51(4), 323–327, AAPT (1983).Google Scholar

[85]

Tong J., Mercedes A., Chen G., Boriskina S. V., Local field topology behind light localization and metamaterial topological transitions, [Singular and Chiral Nanoplasmonics], S. V. Boriskina and N. I. Zheludev, Eds., Pan Stanford, 259–284 (2014).Google Scholar

[86]

Bliokh K. Y., Nori F., Transverse spin of a surface polariton, Phys. Rev. A 85(6), 061801 (2012).Google Scholar

[87]

Rosenblatt G., Feigenbaum E., Orenstein M., Circular motion of electromagnetic power shaping the dispersion of Surface Plasmon Polaritons, Opt. Express 18(25), 25861–25872, OSA (2010).Google Scholar

[88]

Volokitin A. I., Persson B. N. J., Near-field radiative heat transfer and noncontact friction, Rev. Mod. Phys. 79(4), 1291–1329, American Physical Society (2007).Google Scholar

[89]

Pendry J. B., Radiative exchange of heat between nanostructures, J. Phys. Condens. Matter 11(35), 6621 (1999).Google Scholar

[90]

Narayanaswamy A., Shen S., Hu L., Chen X. Y., Chen G., Breakdown of the Planck blackbody radiation law at nanoscale gaps, Appl. Phys. A. Mater. Sci. Proces. 96(2), 357–362 (2009).Google Scholar

[91]

Biehs S.-A., Rousseau E., Greffet J.-J., Mesoscopic description of radiative heat transfer at the nanoscale, Phys. Rev. Lett. 105(23), 234301 (2010).Google Scholar

[92]

Ben-Abdallah P., Joulain K., Drevillon J., Domingues G., Nearfield heat transfer mediated by surface wave hybridization between two films, J. Appl. Phys. 106(4), 044306 (2009).Google Scholar

[93]

Basu S., Francoeur M., Maximum near-field radiative heat transfer between thin films, Appl. Phys. Lett. 98(24), 243120, AIP (2011).Google Scholar

[94]

Basu S., Zhang Z. M., Fu C. J., Review of near-field thermal radiation and its application to energy conversion, Int. J. Energy Res. 33(13), 1203–1232 (2009).Google Scholar

[95]

Basu S., Zhang Z. M., Maximum energy transfer in near-field thermal radiation at nanometer distances, J. Appl. Phys. 105(9), 093535, AIP Publishing (2009).Google Scholar

[96]

van Zwol P. J., Joulain K., Ben-Abdallah P., Chevrier J., Phonon polaritons enhance near-field thermal transfer across the phase transition of VO_{2}, Phys. Rev. B 84(16), 161413 (2011).Google Scholar

[97]

Poddubny A., Iorsh I., Belov P., Kivshar Y., Hyperbolic metamaterials, Nat. Photonics 7(12), 948–957, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. (2013).Google Scholar

[98]

Guo Y., Jacob Z., Thermal hyperbolic metamaterials, Opt. Express 21(12), 15014–15019 (2013).Google Scholar

[99]

Biehs S.-A., Tschikin M., Messina R., Ben-Abdallah P., Super-Planckian near-field thermal emission with phononpolaritonic hyperbolic metamaterials, Appl. Phys. Lett. 102(13), 131106, AIP Publishing (2013).Google Scholar

[100]

Noginov M. A., Li H., Barnakov Y. A., Dryden D., Nataraj G., Zhu G., Bonner C. E., Mayy M., Jacob Z., et al., Controlling spontaneous emission with metamaterials, Opt. Lett. 35(11), 1863–1865, OSA (2010).Google Scholar

[101]

Corrigan T. D., Park D. H., Drew H. D., Guo S.-H., Kolb P. W., Herman W. N., Phaneuf R. J., Broadband and mid-infrared absorber based on dielectric-thin metal film multilayers, Appl. Opt. 51(8), 1109–1114, Optical Society of America (2012).Google Scholar

[102]

Sergeant N. P., Pincon O., Agrawal M., Peumans P., Design of wide-angle solar-selective absorbers using aperiodic metaldielectric stacks, Opt. Express 17(25), 22800–22812, Optical Society of America (2009).Google Scholar

[103]

Biehs S.-A., Tschikin M., Ben-Abdallah P., Hyperbolic Metamaterials as an Analog of a Blackbody in the Near Field, Phys. Rev. Lett. 109(10), 104301 (2012).Google Scholar

[104]

Molesky S., Dewalt C. J., Jacob Z., High temperature epsilonnear-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics, Opt. Express 21 Suppl 1(January), A96–A110, Optical Society of America (2013).Google Scholar

[105]

Tong J. K., Hsu W.-C., Huang Y., Boriskina S. V., Chen G., Thin-film “Thermal Well” emitters and absorbers for highefficiency thermophotovoltaics, Optics, Sci. Reports 5, 10661 (2015).Google Scholar

[106]

Kats M. A., Blanchard R., Genevet P., Capasso F., Nanometre optical coatings based on strong interference effects in highly absorbing media, Nat. Mater. 12(1), 20–24, Nature Publishing Group (2013).Google Scholar

[107]

Narayanaswamy A., Mayo J., Canetta C., Infrared selective emitters with thin films of polar materials, Appl. Phys. Lett. 104(18), 183107, AIP Publishing (2014).Google Scholar

[108]

Cao L., White J. S., Park J.-S., Schuller J. A., Clemens B. M., Brongersma M. L., Engineering light absorption in semiconductor nanowire devices, Nat. Mater. 8(8), 643–647, Nature Publishing Group (2009).Google Scholar

[109]

Krogstrup P., Jřrgensen H. I., Heiss M., Demichel O., Holm J. V., Aagesen M., Nygard J., Fontcuberta i Morral A., Singlenanowire solar cells beyond the Shockley–Queisser limit, Nat. Photonics 7(4), 306–310, Nature Publishing Group (2013).Google Scholar

[110]

Schuller J. A., Taubner T., Brongersma M. L., Optical antenna thermal emitters, Nat. Photonics 3(11), 658–661, Nature Publishing Group (2009).Google Scholar

[111]

Tong J. K., Hsu W.-C., Eon Han S., Burg B. R., Zheng R., Shen S., Chen G., Direct and quantitative photothermal absorption spectroscopy of individual particulates, Appl. Phys. Lett. 103(26), 261104 (2013).Google Scholar

[112]

Matsko A. B., Ilchenko V. S., Optical resonators with whispering-gallery modes-part I: basics, IEEE J. Sel. Top. Quantum Electron. 12(1), 3–14 (2006).Google Scholar

[113]

Ilchenko V. S., Matsko A. B., Optical resonators with whispering-gallery modes-part II: applications, IEEE J. Sel. Top. Quantum Electron. 12(1), 15–32 (2006).Google Scholar

[114]

Benson T. M., Boriskina S. V., Sewell P., Vukovic A., Greedy S. C., Nosich A. I., Micro-optical resonators for microlasers and integrated optoelectronics, [Frontiers in Planar Lightwave Circuit Technology, Volume 216 of the series NATO Science Series II: Mathematics, Physics and Chemistry], Springer, 39–70 (2006).Google Scholar

[115]

Boriskina S. V., Reinhard B. M., Spectrally and spatially configurable superlenses for optoplasmonic nanocircuits, Proc. Natl. Acad. Sci. U. S. A. 108(8), 3147–3151 (2011).Google Scholar

[116]

Yablonovitch E., Gmitter T. J., Meade R. D., Rappe A. M., Brommer K. D., Joannopoulos J. D., Donor and acceptor modes in photonic band structure, Phys. Rev. Lett. 67(24), 3380, American Physical Society (1991).Google Scholar

[117]

Ben-Abdallah P., Ni B., Single-defect Bragg stacks for highpower narrow-band thermal emission, J. Appl. Phys. 97(10), 104910, AIP Publishing (2005).Google Scholar

[118]

Vahala K. J., Optical microcavities, Nature 424(6950), 839–846 (2003).Google Scholar

[119]

Johnson B. R., Theory of morphology-dependent resonances: shape resonances and width formulas, J. Opt. Soc. Am. A 10(2), 343–352, OSA (1993).Google Scholar

[120]

Boriskina S. V., Sewell P., Benson T. M., Nosich A. I., Accurate simulation of two-dimensional optical microcavities with uniquely solvable boundary integral equations and trigonometric Galerkin discretization, J. Opt. Soc. Am. A. Opt. Image Sci. Vis. 21(3), 393–402 (2004).Google Scholar

[121]

Boriskina S. V., Theoretical prediction of a dramatic Q-factor enhancement and degeneracy removal of whispering gallery modes in symmetrical photonic molecules, Opt. Lett. 31(3), 338–340 (2006).Google Scholar

[122]

Boriskina S. V., Tong J. K., Hsu W.-C., Weinstein L., Huang X., Loomis J., Xu Y., Chen G., Hybrid optical-thermal devices and materials for light manipulation and radiative cooling, Proc. SPIE 9546, Act. Photonic Mater. VII, 95461U (2015).Google Scholar

[123]

Hu L., Chen G., Analysis of optical absorption in silicon nanowire Arrays for photovoltaic applications, Nano Lett. 7(11), 3249–3252 (2007).Google Scholar

[124]

Dyachenko P. N., do Rosário J. J., Leib E. W., Petrov A. Y., Störmer M., Weller H., Vossmeyer T., Schneider G. A., Eich M., Tungsten band edge absorber/emitter based on a monolayer of ceramic microspheres, Opt. Express 23(19), A1236, Optical Society of America (2015).Google Scholar

[125]

Vernooy D. W., Furusawa A., Georgiades N. P., Ilchenko V. S., Kimble H. J., Cavity QED with high-Q whispering gallery modes, Phys. Rev. A 57(4), R2293, American Physical Society (1998).Google Scholar

[126]

Gopinath A., Boriskina S. V., Premasiri W. R., Ziegler L., Reinhard B. M., Dal Negro L., Plasmonic nanogalaxies: multiscale aperiodic arrays for surface-enhanced Raman sensing, Nano Lett. 9(11), 3922–3929 (2009).Google Scholar

[127]

Benson T. M., Boriskina S. V., Sewell P., Vukovic A., Nosich A. I., Janyani V., Al-Jarro A., Sakhnenko N., Smotrova E. I., et al., Micro-resonators: simulation and application, Proc. CAOL 2005. Second Int. Conf. Adv. Optoelectron. Lasers, 2005. 1 (2005).Google Scholar

[128]

Wang J., Yang L., Boriskina S. V., Reinhard B. M. B. M., Yan B., Reinhard B. M. B. M., Spectroscopic ultra-trace detection of nitro-aromatic gas vapor on rationally designed nanoparticle cluster arrays, Anal. Chem. 83(6), 2243–2249 (2011).Google Scholar

[129]

Muskens O. L., Giannini V., Sanchez-Gil J. A., Gomez Rivas J., Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas, Nano Lett. 7(9), 2871–2875, American Chemical Society (2007).Google Scholar

[130]

Pelton M., Modified spontaneous emission in nanophotonic structures, Nat. Photonics 9(7), 427–435, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved (2015).Google Scholar

[131]

Giannini V., Fernández-Domínguez A. I., Sonnefraud Y., Roschuk T., Fernández-García R., Maier S. A., Controlling light localization and light–matter interactions with nanoplasmonics, Small 6(22), 2498–2507, WILEY-VCH Verlag (2011).Google Scholar

[132]

Ahn W., Hong Y., Boriskina S. V., Zhao X., Reinhard B. M., Template-guided self-assembly of discrete optoplasmonic molecules and extended optoplasmonic arrays, Nanophotonics 4(1), 250–260 (2015).Google Scholar

[133]

Ho C. K., Iverson B. D., Review of high-temperature central receiver designs for concentrating solar power, Renew. Sustain. Energy Rev. 29, 835–846 (2014).Google Scholar

[134]

ASTM International West Conshohocken PA., ASTM Standard G173-03: Standard tables for reference solar spectral irradiances: direct normal and hemispherical on 37° tilted surface (2008).Google Scholar

[135]

Badescu V., Spectrally and angularly selective photothermal and photovoltaic converters under one-sun illumination, J. Phys. D Appl. Phys. 38(13), 2166 (2005).Google Scholar

[136]

McEnaney K., Kraemer D., Chen G., Direct heat-to-electricity conversion of solar energy, An. Rev. Heat Transf. 15, 179–230 (2012).Google Scholar

[137]

Bermel P., Lee J., Joannopoulos J. D., Celanovic I., Soljacic M., Selective solar absorbers, An. Rev. Heat Transf. (2012).Google Scholar

[138]

Yeng Y. X., Ghebrebrhan M., Bermel P., Chan W. R., Joannopoulos J. D., Soljačić M., Celanovic I., Enabling hightemperature nanophotonics for energy applications, Proc. Natl. Acad. Sci. U. S. A. 109(7), 2280–2285 (2012).Google Scholar

[139]

McEnaney K., Modeling of solar thermal selective surfaces and thermoelectric generators, MIT (2010).Google Scholar

[140]

Shen Y., Ye D., Celanovic I., Johnson S. G., Joannopoulos J. D., Soljačić M., Optical broadband angular selectivity, Science 343(6178), 1499–1501 (2014).Google Scholar

[141]

Blanco M. J., Marti J. G., Alarcan-Padilla D. C., Theoretical efficiencies of angular-selective non-concentrating solar thermal systems, Sol. Energy 76(6), 683–691 (2004).Google Scholar

[142]

Weinstein L., Kraemer D., McEnaney K., Chen G., Optical cavity for improved performance of solar receivers in solarthermal systems, Sol. Energy 108, 69–79 (2014).Google Scholar

[143]

Weinstein L. A., Hsu W.-C., Yerci S., Boriskina S. V., Chen G., Enhanced absorption of thin-film photovoltaic cells using an optical cavity, J. Opt. 17(5), 055901, IOP Publishing (2015).Google Scholar

[144]

Braun A., Katz E. A., Feuermann D., Kayes B. M., Gordon J. M., Photovoltaic performance enhancement by external recycling of photon emission, Energy Environ. Sci. 6(5), 1499, The Royal Society of Chemistry (2013).Google Scholar

[145]

Ilic O., Bermel P., Chen G., Joannopoulos J. D., Celanovic I., Soljacic M., Tailoring high temperature radiation and the resurrection of the incandescent source, Nat. Nanotech. (2016).Google Scholar

[146]

Lenert A., Bierman D. M., Nam Y., Chan W. R., Celanović I., Soljačić M., Wang E. N., A nanophotonic solar thermophotovoltaic device, Nat. Nanotechnol. 9(2), 126–130, Nature Publishing Group (2014).Google Scholar

[147]

Bermel P., Harradon M., Soljacic M., Celanovic I., Joannopoulos J. D., Yeng Y., Ghebrebrhan M., Tailoring photonic metamaterial resonances for thermal radiation, Nanoscale Res. Lett. 6, 549 (2011).Google Scholar

[148]

Boriskina S. V., Benson T. M., Sewell P., Nosich A. I., Q factor and emission pattern control of the WG modes in notched microdisk resonators, IEEE J. Sel. Top. Quantum Electron. 12(1), 52–88 (2006).Google Scholar

[149]

Boriskina S. V., Benson T. M., Sewell P. D., Nosich A. I., Directional emission, increased free spectral range, and mode Q-factors in 2-D wavelength-scale optical microcavity structures, IEEE J. Sel. Top. Quantum Electron. 12(6), 1175–1182 (2006).Google Scholar

[150]

Wang Q. J., Yan C., Yu N., Unterhinninghofen J., Wiersig J., Pflügl C., Diehl L., Edamura T., Yamanishi M., et al., Whispering-gallery mode resonators for highly unidirectional laser action, Proc. Natl. Acad. Sci. U. S. A. 107(52), 22407–22412 (2010).Google Scholar

[151]

Laroche M., Arnold C., Marquier F., Carminati R., Greffet J.-J., Collin S., Bardou N., Pelouard J.-L., Highly directional radiation generated by a tungsten thermal source, Opt. Lett. 30(19), 2623, Optical Society of America (2005).Google Scholar

[152]

Arnold C., Marquier F., Garin M., Pardo F., Collin S., Bardou N., Pelouard J.-L., Greffet J.-J., Coherent thermal infrared emission by two-dimensional silicon carbide gratings, Phys. Rev. B 86(3), 035316 (2012).Google Scholar

[153]

Bermel P., Ghebrebrhan M., Chan W., Yeng Y. X., Araghchini M., Hamam R., Marton C. H., Jensen K. F., Soljacic M., et al., Design and global optimization of high-efficiency thermophotovoltaic systems, Opt. Express 18(S3), A314–A334, OSA (2010).Google Scholar

[154]

Rinnerbauer V., Ndao S., Xiang Yeng Y., Senkevich J. J., Jensen K. F., Joannopoulos J. D., Soljačić M., Celanovic I., Geil R. D., Large-area fabrication of high aspect ratio tantalum photonic crystals for high-temperature selective emitters, J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 31(1), 011802, American Institute of Physics (2013).Google Scholar

[155]

Chen G., Wang E. N., Boriskina S. V., McEnaney K., Ghasemi H., Yerci S., Lenert A., Yang S., Miljkovic N., et al., Internallyheated thermal and externally-cool photovoltaic cascade solar system for the full solar spectrum utilization, US 20150053266 A1 (2015).Google Scholar

[156]

Kats M. A., Byrnes S. J., Blanchard R., Kolle M., Genevet P., Aizenberg J., Capasso F., Enhancement of absorption and color contrast in ultra-thin highly absorbing optical coatings, Appl. Phys. Lett. 103(10), 101104, AIP Publishing (2013).Google Scholar

[157]

Roberts A. S., Chirumamilla M., Thilsing-Hansen K., Pedersen K., Bozhevolnyi S. I., Near-infrared tailored thermal emission from wafer-scale continuous-film resonators, Opt. Express 23(19), A1111, Optical Society of America (2015).Google Scholar

[158]

Jang M. S., Brar V. W., Sherrott M. C., Lopez J. J., Kim L., Kim S., Choi M., Atwater H. A., Tunable large resonant absorption in a midinfrared graphene Salisbury screen, Phys. Rev. B 90(16), 165409 (2014).Google Scholar

[159]

Langlais M., Prod’homme P., Bru H., Ben-Abdallah P., High temperature layered absorber for thermo-solar systems, J. Quant. Spectrosc. Radiat. Transf. 149, 8–15 (2014).Google Scholar

[160]

Zhu L., Raman A., Wang K. X., Anoma M. A., Fan S., Radiative cooling of solar cells, Optica 1(1), 32, Optical Society of America (2014).Google Scholar

[161]

Safi T. S., Munday J. N., Improving photovoltaic performance through radiative cooling in both terrestrial and extraterrestrial environments, Opt. Express 23(19), A1120, Optical Society of America (2015).Google Scholar

[162]

Nilsson T. M. J., Niklasson G. A., Radiative cooling during the day: simulations and experiments on pigmented polyethylene cover foils, Sol. Energy Mater. Sol. Cells 37(1), 93–118 (1995).Google Scholar

[163]

Eriksson T. S., Granqvist C. G., Radiative cooling computed for model atmospheres, Appl. Opt. 21(23), 4381–4388, Optical Society of America (1982).Google Scholar

[164]

Granqvist C. G., Radiative cooling to low temperatures: General considerations and application to selectively emitting SiO films, J. Appl. Phys. 52(6), 4205, AIP Publishing (1981).Google Scholar

[165]

Gentle A. R., Smith G. B., Radiative heat pumping from the Earth using surface phonon resonant nanoparticles, Nano Lett. 10(2), 373–379, American Chemical Society (2010).Google Scholar

[166]

Raman A. P., Anoma M. A., Zhu L., Rephaeli E., Fan S., Passive radiative cooling below ambient air temperature under direct sunlight, Nature 515(7528), 540–544, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved, (2014).Google Scholar

[167]

Rephaeli E., Raman A., Fan S., Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling, Nano Lett. 13(4), 1457–1461, American Chemical Society (2013).Google Scholar

[168]

Steketee J., Spectral emissivity of skin and pericardium, Phys. Med. Biol. 18(5), 686–694, IOP Publishing (1973).Google Scholar

[169]

Tong J. K., Huang X., Boriskina S. V., Loomis J., Xu Y., Chen G., Infrared-transparent visible-opaque fabrics for wearable personal thermal management, ACS Photonics 2(6), 150609075019003, American Chemical Society (2015).Google Scholar

[170]

Ball P., Material witness: Could polythene clothes be cool?, Nat. Mater. 14(9), 865, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved, (2015).Google Scholar

[171]

Feng K., Streyer W., Zhong Y., Hoffman A. J., Wasserman D., Photonic materials, structures and devices for Reststrahlen optics, Opt. Express 23(24), A1418, Optical Society of America (2015).Google Scholar

[172]

Laroche M., Carminati R., Greffet J.-J. J., Near-field thermophotovoltaic energy conversion, J. Appl. Phys. 100(6), 063704, AIP (2006).Google Scholar

[173]

Narayanaswamy A., Chen G., Surface modes for near field thermophotovoltaics, Appl. Phys. Lett. 82(20), 3544–3546, AIP (2003).Google Scholar

[174]

Chester D., Bermel P., Joannopoulos J. D., Soljacic M., Celanovic I., Design and global optimization of highefficiency solar thermal systems with tungsten cermets, Opt. Express 19 Suppl 3(S3), A245–A257, OSA (2011).Google Scholar

[175]

Kano Y., Wolf E., Temporal Coherence of Black Body Radiation, Proc. Phys. Soc. 80(6), 1273–1276, IOP Publishing (1962).Google Scholar

[176]

Mehta C. L., Coherence-time and effective bandwidth of blackbody radiation, Nuovo Cim. 28(2), 401–408 (2008).Google Scholar

[177]

Klein L. J., Hamann H. F., Au Y.-Y., Ingvarsson S., Coherence properties of infrared thermal emission from heated metallic nanowires, Appl. Phys. Lett. 92(21), 213102, AIP Publishing (2008).Google Scholar

[178]

Donges A., The coherence length of black-body radiation, Eur. J. Phys. 19(3), 245–249, IOP Publishing (1998).Google Scholar

[179]

Carminati R., Greffet J.-J., Near-Field Effects in Spatial Coherence of Thermal Sources, Phys. Rev. Lett. 82(8), 1660–1663 (1999).Google Scholar

[180]

Greffet J.-J., Carminati R., Joulain K., Mulet J.-P., Mainguy S., Chen Y., Coherent emission of light by thermal sources, Nature 416(6876), 61–64, Macmillian Magazines Ltd. (2002).Google Scholar

[181]

Hasman E., Kleiner V., Dahan N., Gorodetski Y., Frischwasser K., Balin I., Manipulation of Thermal Emission by Use of Micro and Nanoscale Structures, J. Heat Transfer 134(3), 031023 (2012).Google Scholar

[182]

Han S. E., Norris D. J., Beaming thermal emission from hot metallic bull’s eyes, Opt. Express 18(5), 4829–4837, Optical Society of America (2010).Google Scholar

[183]

Stanley R., Plasmonics in the mid-infrared, Nat. Photonics 6(7), 409–411, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved, (2012).Google Scholar

[184]

Puscasu I., Schaich W. L., Narrow-band, tunable infrared emission from arrays of microstrip patches, Appl. Phys. Lett. 92(23), 233102, AIP Publishing (2008).Google Scholar

[185]

Costantini D., Lefebvre A., Coutrot A.-L., Moldovan-Doyen I., Hugonin J.-P., Boutami S., Marquier F., Benisty H., Greffet J.-J., Plasmonic Metasurface for Directional and Frequency-Selective Thermal Emission, Phys. Rev. Appl. 4(1), 014023 (2015).Google Scholar

[186]

Liu X., Tyler T., Starr T., Starr A. F., Jokerst N. M., Padilla W. J., Taming the blackbody with infrared metamaterials as selective thermal emitters, Phys. Rev. Lett. 107(4), 45901, American Physical Society (2011).Google Scholar

[187]

Hesketh P. J., Zemel J. N., Gebhart B., Polarized spectral emittance from periodic micromachined surfaces. II. Doped silicon: Angular variation, Phys. Rev. B 37(18), 10803–10813 (1988).Google Scholar

[188]

Hesketh P. J., Zemel J. N., Gebhart B., Organ pipe radiant modes of periodic micromachined silicon surfaces, Nature 324(6097), 549–551 (1986).Google Scholar

[189]

Pralle M. U., Moelders N., McNeal M. P., Puscasu I., Greenwald A. C., Daly J. T., Johnson E. A., George T., Choi D. S., et al., Photonic crystal enhanced narrow-band infrared emitters, Appl. Phys. Lett. 81(25), 4685, AIP Publishing (2002).Google Scholar

[190]

Sandus O., A Review of Emission Polarization, Appl. Opt. 4(12), 1634, Optical Society of America (1965).Google Scholar

[191]

Bimonte G., Cappellin L., Carugno G., Ruoso G., Saadeh D., Polarized thermal emission by thin metal wires, New J. Phys. 11(3), 033014, IOP Publishing (2009).Google Scholar

[192]

Öhman Y., Polarized thermal emission from narrow tungsten filaments, Nature 192(4799), 254–254 (1961).Google Scholar

[193]

Frischwasser K., Yulevich I., Kleiner V., Hasman E., Rashbalike spin degeneracy breaking in coupled thermal antenna lattices, Opt. Express 19(23), 23475–23482, Optical Society of America (2011).Google Scholar

[194]

Dahan N., Gorodetski Y., Frischwasser K., Kleiner V., Hasman E., Geometric Doppler Effect: Spin-Split Dispersion of Thermal Radiation, Phys. Rev. Lett. 105(13), 136402 (2010).Google Scholar

[195]

Bliokh K. Y., Niv A., Kleiner V., Hasman E., Geometrodynamics of spinning light, Nat. Photonics 2(12), 748–753, Nature Publishing Group (2008).Google Scholar

[196]

Hosten O., Kwiat P., Observation of the Spin Hall effect of light via weak measurements, Science (80-.). 319(5864), 787–790 (2008).Google Scholar

[197]

Shitrit N., Bretner I., Gorodetski Y., Kleiner V., Hasman E., Optical Spin Hall Effects in Plasmonic Chains, Nano Lett. 11(5), 2038–2042, American Chemical Society (2011).Google Scholar

[198]

Dooghin A. V., Kundikova N. D., Liberman V. S., Zel’dovich B. Y., Optical Magnus effect, Phys. Rev. A 45(11), 8204–8208 (1992).Google Scholar

[199]

Bliokh K. Y., Gorodetski Y., Kleiner V., Hasman E., Coriolis effect in optics: Unified geometric phase and Spin-Hall effect, Phys. Rev. Lett. 101(3), 030404 (2008).Google Scholar

[200]

Engel M., Steiner M., Lombardo A., Ferrari A. C., v. Lohneysen H., Avouris P., Krupke R., Löhneysen H. V., Avouris P., et al., Light-matter interaction in a microcavity-controlled graphene transistor, Nat. Commun. 3, 906, Nature Publishing Group (2012).Google Scholar

[201]

Dorgan V. E., Behnam A., Conley H. J., Bolotin K. I., Pop E., High-field electrical and thermal transport in suspended graphene, Nano Lett. 13(10), 4581–4586, American Chemical Society (2013).Google Scholar

[202]

Kim Y. D., Kim H., Cho Y., Ryoo J. H., Park C.-H., Kim P., Kim Y. S., Lee S., Li Y., et al., Bright visible light emission from graphene, Nat. Nanotechnol. 10(8), 676–681, Nature Publishing Group (2015).Google Scholar

[203]

Andreev V. M., Vlasov A. S., Khvostikov V. P., Khvostikova O. A., Gazaryan P. Y., Sorokina S. V., Sadchikov N. A., Solar Thermophotovoltaic Converters Based on Tungsten Emitters, J. Sol. Energy Eng. 129(3), 298 (2007).Google Scholar

[204]

Swanson R. M., A proposed thermophotovoltaic solar energy conversion system, Proc. IEEE 67(3), 446–447 (1979).Google Scholar

[205]

Spirkl W., Ries H., Solar thermophotovoltaics: An assessment, J. Appl. Phys. 57(9), 4409–4414, AIP (1985).Google Scholar

[206]

Ungaro C., Gray S. K., Gupta M. C., Solar thermophotovoltaic system using nanostructures, Opt. Express 23(19), A1149, Optical Society of America (2015).Google Scholar

[207]

Rephaeli E., Fan S., Absorber and emitter for solar thermophotovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit, Opt. Express 17(17), 15145–15159, OSA (2009).Google Scholar

[208]

Boriskina S. V., Chen G., Exceeding the solar cell Shockley-Queisser limit via thermal up-conversion of low-energy photons, Opt. Commun. 314, 71–78 (2014).Google Scholar

[209]

Seo T. H., Shin G., Kyoung Kim B., Choi C.-J., Lee C., Jong Kim M., Suh E.-K., Enhancement of light output power in ultraviolet light emitting diodes using graphene film on selfassembled Au nanocluster by agglomeration process, J. Appl. Phys. 114(22), 223105, AIP Publishing (2013).Google Scholar

[210]

Yen S.-T., Lee K.-C., Analysis of heterostructures for electroluminescent refrigeration and light emitting without heat generation, J. Appl. Phys. 107(5), 054513, AIP Publishing (2010).Google Scholar

[211]

Dousmanis G. C., Mueller C. W., Nelson H., Petzinger K. G., Evidence of Refrigerating Action by Means of Photon Emission in Semiconductor Diodes, Phys. Rev. 133(1A), A316–A318 (1964).Google Scholar

[212]

Berdahl P., Radiant refrigeration by semiconductor diodes, J. Appl. Phys. 58(3), 1369, AIP Publishing (1985).Google Scholar

[213]

Vavilov S. I., Photoluminescence and thermodynamics, J. Phys. USSR 10, 499–501 (1946).Google Scholar

[214]

Yu S.-Q., Wang J.-B., Ding D., Johnson S. R., Vasileska D., Zhang Y.-H., Impact of electronic density of states on electroluminescence refrigeration, Solid. State. Electron. 51(10), 1387–1390 (2007).Google Scholar

[215]

Lopez-Sanchez O., Alarcon Llado E., Koman V., Fontcuberta I Morral A., Radenovic A., Kis A., Light Generation and Harvesting in a van der Waals Heterostructure, Mesoscale and Nanoscale Physics, ACS Nano (2014).Google Scholar

[216]

Nemova G., Kashyap R., Laser cooling with PbSe colloidal quantum dots, J. Opt. Soc. Am. B 29(4), 676, Optical Society of America (2012).Google Scholar

[217]

Khurgin J. B., Role of bandtail states in laser cooling of semiconductors, Phys. Rev. B 77(23), 235206 (2008).Google Scholar

[218]

Zhang J., Li D., Chen R., Xiong Q., Laser cooling of a semiconductor by 40 kelvin, Nature 493(7433), 504–508, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved, (2013).Google Scholar

[219]

Khurgin J. B., Band gap engineering for laser cooling of semiconductors, J. Appl. Phys. 100(11), 113116, AIP Publishing (2006).Google Scholar

[220]

Khurgin J. B., Surface Plasmon-Assisted Laser Cooling of Solids, Phys. Rev. Lett. 98(17), 177401 (2007).Google Scholar

[221]

Martin R. P., Velten J., Stintz A., Malloy K. J., Epstein R. I., Sheik-Bahae M., Hasselbeck M. P., Imangholi B., Boyd S. T. P., et al., Nanogap experiments for laser cooling: a progress report, Proc. SPIE 6461, Laser Cool. Solids, 64610H (2007).Google Scholar

[222]

Li D., Zhang J., Wang X., Huang B., Xiong Q., Solid-state semiconductor optical cryocooler based on CdS nanobelts, Nano Lett. 14(8), 4724–4728, American Chemical Society (2014).Google Scholar

[223]

Chen Y.-C., Bahl G., Raman cooling of solids through photonic density of states engineering, Optica 2(10), 893, Optical Society of America (2015).Google Scholar

[224]

Manor A., Kruger N., Rotschild C., Entropy driven multiphoton frequency up-conversion, CLEO/QELS Conf. Proc., QF2D.1, Osa, Washington, D.C. (2013).Google Scholar

[225]

Buckner B. D., Heeg B., Power generation by thermally assisted electroluminescence: like optical cooling, but different, Proc. SPIE 6907, Laser Refrig. Solids, 69070I, 2008, 9 November 2015.Google Scholar

[226]

Ekins-Daukes N. J., Ballard I., Calder C. D. J., Barnham K. W. J., Hill G., Roberts J. S., Photovoltaic efficiency enhancement through thermal up-conversion, Appl. Phys. Lett. 82(12), 1974, AIP Publishing (2003).Google Scholar

[227]

Rousseau E., Laroche M., Greffet J.-J., Radiative heat transfer at nanoscale: Closed-form expression for silicon at different doping levels, J. Quant. Spectrosc. Radiat. Transf. 111(7/8), 1005–1014 (2010).Google Scholar

[228]

Ben-Abdallah P., Joulain K., Fundamental limits for noncontact transfers between two bodies, Phys. Rev. B 82(12), 121419 (2010).Google Scholar

[229]

Hu L., Narayanaswamy A., Chen X., Chen G., Near-field thermal radiation between two closely spaced glass plates exceeding Planck’s blackbody radiation law, Appl. Phys. Lett. 92(13), 133106 (2008).Google Scholar

[230]

Basu S., Francoeur, M., Near-field radiative transfer based thermal rectification using doped silicon, Appl. Phys. Lett. 98(11), 113106 (2011).Google Scholar

[231]

Miller O. D., Johnson S. G., Rodriguez A. W., Shapeindependent limits to near-field radiative heat transfer, Optics, 6 (2015).Google Scholar

[232]

Polder D., Van Hove M., Theory of Radiative Heat Transfer between Closely Spaced Bodies, Phys. Rev. B 4(10), 3303–3314 (1971).Google Scholar

[233]

Economou E. N., Surface Plasmons in Thin Films, Phys. Rev. 182(2), 539–554 (1969).Google Scholar

[234]

Miller O. D., Johnson S. G., Rodriguez A. W., Effectiveness of Thin Films in Lieu of Hyperbolic Metamaterials in the Near Field, Phys. Rev. Lett. 112(15), 157402 (2014).Google Scholar

[235]

Song B., Ganjeh Y., Sadat S., Thompson D., Fiorino A., Fernández-Hurtado V., Feist J., Garcia-Vidal F. J., Cuevas J. C., et al., Enhancement of near-field radiative heat transfer using polar dielectric thin films, Nat. Nanotechnol. 10(3), 253–258, Nature Publishing Group (2015).Google Scholar

[236]

Othman M. A. K., Guclu C., Capolino F., Graphene-based tunable hyperbolic metamaterials and enhanced near-field absorption, Opt. Express 21(6), 7614–7632 (2013).Google Scholar

[237]

Francoeur M., Mengüç M. P., Vaillon R., Local density of electromagnetic states within a nanometric gap formed between two thin films supporting surface phonon polaritons, J. Appl. Phys. 107(3), 034313, AIP Publishing (2010).Google Scholar

[238]

Liu X. L., Zhang R. Z., Zhang Z. M., Near-field thermal radiation between hyperbolic metamaterials: Graphite and carbon nanotubes, Appl. Phys. Lett. 103(21), 213102, AIP Publishing (2013).Google Scholar

[239]

Liu B., Shi J., Liew K., Shen S., Near-field radiative heat transfer for Si based metamaterials, Opt. Commun. 314, 57–65 (2014).Google Scholar

[240]

Novotny L., Hecht B., Principles of nano-optics, Cambridge University Press (2006).Google Scholar

[241]

Tian Z., Esfarjani K., Chen G., Enhancing phonon transmission across a Si/Ge interface by atomic roughness: Firstprinciples study with the Green’s function method, Phys. Rev. B 86(23), 235304, American Physical Society (2012).Google Scholar

[242]

Chiloyan V., Garg J., Esfarjani K., Chen G., Transition from near-field thermal radiation to phonon heat conduction at sub-nanometer gaps, Nat. Commun., 6755, Nature Publishing Group (2015).Google Scholar

[243]

De Wilde Y., Formanek F., Carminati R., Gralak B., Lemoine P.-A., Joulain K., Mulet J.-P., Chen Y., Greffet J.-J., Thermal radiation scanning tunnelling microscopy, Nature 444(7120), 740–743 (2006).Google Scholar

[244]

Jones A. C., Raschke M. B., Thermal infrared near-field spectroscopy, Nano Lett. 12(3), 1475–1481, American Chemical Society (2012).Google Scholar

[245]

Babuty A., Joulain K., Chapuis P.-O., Greffet J.-J., De Wilde Y., Blackbody Spectrum Revisited in the Near Field, Phys. Rev. Lett. 110(14), 146103 (2013).Google Scholar

[246]

Kittel A., Müller-Hirsch W., Parisi J., Biehs S.-A., Reddig D., Holthaus M., Near-Field Heat Transfer in a Scanning Thermal Microscope, Phys. Rev. Lett. 95(22), 224301 (2005).Google Scholar

[247]

Kryder M. H., Gage E. C., McDaniel T. W., Challener W. A., Rottmayer R. E., Erden M. F., Heat Assisted Magnetic Recording, Proc. IEEE 96(11), 1810–1835 (2008).Google Scholar

[248]

Stipe B. C., Strand T. C., Poon C. C., Balamane H., Boone T. D., Katine J. A., Li J.-L., Rawat V., Nemoto H., et al., Magnetic recording at 1.5 Pb m-2 using an integrated plasmonic antenna, Nat. Photonics 4(7), 484–488, Nature Publishing Group (2010).Google Scholar

[249]

Challener W. A., Peng C., Itagi A. V., Karns D., Peng W., Peng Y., Yang X., Zhu X., Gokemeijer N. J., et al., Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer, Nat. Photonics 3(4), 220–224, Nature Publishing Group (2009).Google Scholar

[250]

Chen K., Santhanam P., Sandhu S., Zhu L., Fan S., Heat-flux control and solid-state cooling by regulating chemical potential of photons in near-field electromagnetic heat transfer, Phys. Rev. B 91(13), 134301 (2015).Google Scholar

[251]

Law S., Adams D. C., Taylor A. M., Wasserman D., Midinfrared designer metals, Opt. Express 20(11), 12155–12165, OSA (2012).Google Scholar

[252]

Naik G. V., Schroeder J. L., Ni X., Kildishev A. V., Sands T. D., Boltasseva A., Titanium nitride as a plasmonic material for visible and near-infrared wavelengths, Opt. Mater. Express 2(4), 478–489, OSA (2012).Google Scholar

[253]

Naik G. V., Kim J., Boltasseva A., Oxides and nitrides as alternative plasmonic materials in the optical range, Opt. Mater. Express 1(6), 1090–1099, OSA (2011).Google Scholar

[254]

Kats M. A., Sharma D., Lin J., Genevet P., Blanchard R., Yang Z., Qazilbash M. M., Basov D. N., Ramanathan S., et al., Ultrathin perfect absorber employing a tunable phase change material, Appl. Phys. Lett. 101(22), 221101, AIP Publishing (2012).Google Scholar

[255]

Qazilbash M. M., Brehm M., Chae B.-G., Ho P.-C., Andreev G. O., Kim B.-J., Yun S. J., Balatsky A. V., Maple M. B., et al., Mott Transition in VO2 Revealed by Infrared Spectroscopy and Nano-Imaging, Science (80-.). 318(5857), 1750–1753 (2007).Google Scholar

[256]

Kats M. A., Blanchard R., Zhang S., Genevet P., Ko C., Ramanathan S., Capasso F., Vanadium Dioxide as a Natural Disordered Metamaterial: Perfect Thermal Emission and Large Broadband Negative Differential Thermal Emittance, Phys. Rev. X 3(4), 041004 (2013).Google Scholar

[257]

Otanicar T. P., Smith R., Dai L., Phelan P. E., Swaminathan R., Applicability of Controllable Nanoparticle Radiative Properties for Spacecraft Heat Rejection, J. Thermophys. Heat Transf., 1–6, American Institute of Aeronautics and Astronautics (2015).Google Scholar

[258]

Inoue T., De Zoysa M., Asano T., Noda S., Realization of dynamic thermal emission control, Nat. Mater. 13(10), 928–931, Nature Publishing Group (2014).Google Scholar

[259]

Brar V. W., Sherrott M. C., Jang M. S., Kim S., Kim L., Choi M., Sweatlock L. A., Atwater H. A., Electronic modulation of infrared radiation in graphene plasmonic resonators, Nat. Commun. 6, 7032, Nature Publishing Group (2015).Google Scholar

[260]

Huang Y., Boriskina S. V., Chen G., Electrically tunable nearfield radiative heat transfer via ferroelectric materials, Appl. Phys. Lett. 105(24), 244102, AIP Publishing (2014).Google Scholar

[261]

Paik T., Hong S.-H., Gaulding E. A., Caglayan H., Gordon T. R., Engheta N., Kagan C. R., Murray C. B., Solution-processed phase-change VO(2) metamaterials from colloidal vanadium oxide (VO(x)) nanocrystals, ACS Nano 8(1), 797–806, American Chemical Society (2014).Google Scholar

[262]

Yi F., Shim E., Zhu A. Y., Zhu H., Reed J. C., Cubukcu E., Voltage tuning of plasmonic absorbers by indium tin oxide, Appl. Phys. Lett. 102(22) (2013).Google Scholar

[263]

Chen Y. G., Kao T. S., Ng B., Li X., Luo X. G., Luk’yanchuk B., Maier S. A., Hong M. H., Hybrid phase-change plasmonic crystals for active tuning of lattice resonances, Opt. Express 21(11), 13691–13698, Optical Society of America (2013).Google Scholar

[264]

Lee H.-J., Smyth K., Bathurst S., Chou J., Ghebrebrhan M., Joannopoulos J., Saka N., Kim S.-G., Hafnia-plugged microcavities for thermal stability of selective emitters, Appl. Phys. Lett. 102(24), 241904, American Institute of Physics (2013).Google Scholar

[265]

Ladutenko K., Belov P., Peńa Rodríguez O., Mirzaei A., Miroshnichenko A., Shadrivov I., Superabsorption of light by nanoparticles, Nanoscale, The Royal Society of Chemistry (2015).Google Scholar

[266]

Mirzaei A., Shadrivov I., Miroshnichenko A., Kivshar Y. S., Superabsorption of Light by Multilayer Nanowires, Nanoscale 7(42), 17658–17663, The Royal Society of Chemistry (2015).Google Scholar

[267]

Simovski C., Maslovski S., Nefedov I., Kosulnikov S., Belov P., Tretyakov S., Hyperlens makes thermal emission strongly super-Planckian, Photonics Nanostructures – Fundam. Appl. 13, 31–41 (2015).Google Scholar

[268]

Ding D., Minnich A. J., Selective radiative heating of nanostructures using hyperbolic metamaterials, Opt. Express 23(7), A299–A308, Optical Society of America (2015).Google Scholar

[269]

Zhou M., Shi L., Zi J., Yu Z., Extraordinarily Large Optical Cross Section for Localized Single Nanoresonator, Phys. Rev. Lett. 115(2), 023903 (2015).Google Scholar

[270]

Moitra P., Yang Y., Anderson Z., Kravchenko I. I., Briggs D. P., Valentine J., Realization of an all-dielectric zero-index optical metamaterial, Nat. Photonics 7(10), 791–795, Nature Publishing Group (2013).Google Scholar

[271]

Dong J.-W., Chang M.-L., Huang X.-Q., Hang Z. H., Zhong Z.-C., Chen W.-J., Huang Z.-Y., Chan C. T., Conical Dispersion and Effective Zero Refractive Index in Photonic Quasicrystals, Phys. Rev. Lett. 114(16), 163901 (2015).Google Scholar

[272]

Boriskina S. V., Quasicrystals: Making invisible materials, Nat. Photonics 9(7), 422–424, Nature Publishing Group (2015).Google Scholar

[273]

Huang X., Lai Y., Hang Z. H., Zheng H., Chan C. T., Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials, Nat. Mater. 10(8), 582–586, Nature Publishing Group (2011).Google Scholar

[274]

Boriskina S. V., Povinelli M., Astratov V. N., Zayats A. V., Podolskiy V. A., Collective phenomena in photonic, plasmonic and hybrid structures, Opt. Express 19(22), 22024 (2011).Google Scholar

[275]

Zhou M., Yi S., Luk T. S., Gan Q., Fan S., Yu Z., Analog of superradiant emission in thermal emitters, Phys. Rev. B 92(2), 024302 (2015).Google Scholar

[276]

Sokhoyan R., Atwater H. A., Cooperative behavior of quantum dipole emitters coupled to a zero-index nanoscale waveguide, Optics, ArXiV (2015).Google Scholar

[277]

Narayanaswamy A., Zheng Y., Theory of thermal nonequilibrium entropy in near-field thermal radiation, Phys. Rev. B 88(7), 075412 (2013).Google Scholar

[278]

Barnett S. M., Phoenix S. J. D., Entropy as a measure of quantum optical correlation, Phys. Rev. A 40(5), 2404–2409 (1989).Google Scholar

[279]

Maghrebi M. F., Jaffe R. L., Kardar M., Nonequilibrium quantum fluctuations of a dispersive medium: Spontaneous emission, photon statistics, entropy generation, and stochastic motion, Phys. Rev. A – At. Mol. Opt. Phys. 90(1) (2014).Google Scholar

[280]

Klembt S., Durupt E., Datta S., Klein T., Baas A., Léger Y., Kruse C., Hommel D., Minguzzi A., et al., Exciton-Polariton Gas as a Nonequilibrium Coolant, Phys. Rev. Lett. 114(18), 186403 (2015).Google Scholar

[281]

Bowman S. R., Lasers without internal heat generation, IEEE J. Quantum Electron. 35(1), 115–122 (1999).Google Scholar

[282]

Nemova G., Kashyap R., Thin-disk athermal laser system, Opt. Commun. 319, 100–105 (2014).Google Scholar

[283]

Tolman R. C., Fine P. C., On the irreversible production of entropy, Rev. Mod. Phys. 20(1), 51–77, American Physical Society (1948).Google Scholar

[284]

Mungan C. E., Thermodynamics of radiation-balanced lasing, 1075–1082 (2003).Google Scholar