[1]

Hutter E, Fendler JH. Exploitation of localized surface plasmon resonance. Adv Mater 2004;16:1685–706.Google Scholar

[2]

Sweatlock LA, Maier SA, Atwarter HA, Penninkhof JJ, Polman A. Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles. Phys Rev B 2005;71:235408.Google Scholar

[3]

Alù A, Engheta N. Theory of linear chains of metamaterial/plasmonic particles as subdiffraction optical nanotransmission lines. Phys Rev B 2006;74:205436.Google Scholar

[4]

Jain PK, Huang X, El-Sayed H, El-Sayed MA. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc Chem Res 2008;41:1578–86.Google Scholar

[5]

Ebbesen, TW, Lezec HJ, Ghaemi HF, Thio T, Wolff PA. Extraordinary optical transmission through sub-wavelength hole arrays. Nature (Lond) 1998;391:667–9.Google Scholar

[6]

Scalora M, D’Aguanno G, Mattiucci N, Bloemer MJ, de Ceglia D, Centini M, Mandatori A, Sibilia C, Akozbek N, Cappeddu MG, Fowler M, Haus JW. Negative refraction and sub-wavelength focusing in the visible range using transparent metallodielectric stacks. Opt Express 2007;15:508–23.Google Scholar

[7]

Shalaev VM. Optical negative-index metamaterials. Nat Photon 2007;1:41–8.Google Scholar

[8]

Ricard D, Roussignol O, Flytzanis C. Surface-mediated enhancement of optical phase conjugation in metal colloids. Opt Lett 1985;10:511–3.Google Scholar

[9]

Klar T, Perner M, Grosse S, Plessen G, Spirkl W, Feldmann J. Surface-plasmon resonances in single metallic nanoparticles. Phys Rev Lett 1998;80:4249–52.Google Scholar

[10]

Kelly KL, Coronado E, Zhao LL, Schatz GC. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 2003;107:668–77.Google Scholar

[11]

Pu Y, Grange R, Hsieh CL, Psaltis D. Nonlinear optical properties of core-shell nanocavities for enhanced second-harmonic generation. Phys Rev Lett 2010;104:207402.Google Scholar

[12]

Danckwerts M, Novotny L. Optical frequency mixing at coupled gold nanoparticles. Phys Rev Lett 2007;98:026104.Google Scholar

[13]

Palomba S, Novotny L. Near-field imaging with a localized nonlinear light source. Nano Lett 2009;11:3801–4.Google Scholar

[14]

Navarro-Cia M, Maier SA. Broad-band near-infrared plasmonic nanoantennas for higher harmonic generation. ACS Nano 2012;6:3537–44.Google Scholar

[15]

Maier SA. Plasmonic field enhancement and SERS in the effective mode volume picture. Opt Express 2006;14:1957–64.Google Scholar

[16]

Muhlschlegel P, Eisler HJ, Martin OJF, Hecht B, Pohl DW. Resonant optical antennas. Science 2005;308:1607–9.Google Scholar

[17]

Novotny L, Hulst NV. Antennas for light. Nat Photonics 2011;5:83–90.Google Scholar

[18]

Biagioni P, Huang JS, Hecht B. Nanoantennas for visible and infrared radiation. Rep Prog Phys 2012;75:024402.Google Scholar

[19]

Alù A, Engheta N. Tuning the scattering response of optical nanoantennas with nanocircuit loads. Nat Photonics 2008;2:307–10.Google Scholar

[20]

Alù A, Engheta N. Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas. Phys Rev Lett 2008;101:043901.Google Scholar

[21]

Sorger VJ, Oulton RF, Yao J, Bartal G, Zhang X. Submicrometer in-plane integrated surface plasmon cavities. Nano Lett 2009;9:3489–93.Google Scholar

[22]

Fang N, Lee H, Sun C, Zhang X. Sub-diffraction-limited optical imaging with a silver superlens. Science 2005;308:534–7.Google Scholar

[23]

Shvets G, Urzhumov YA. Engineering the electromagnetic properties of periodic nanostructures using electrostatic resonances. Phys Rev Lett 2004;93:243902.Google Scholar

[24]

Alù A, Engheta N. Achieving transparency with plasmonic and metamaterial coatings. Phys Rev E 2005;72:016623.Google Scholar

[25]

Cai W, Chettiar UK, Kildshev AV, Shalaev VM. Optical cloaking with metamaterials. Nat Photon 2007;1:224–7.Google Scholar

[26]

Engheta N, Salandrino A, Alù A. Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors. Phys Rev Lett 2005;95:095504.Google Scholar

[27]

Huang W, Quian W, Jain PK, El-Sayed MA. The effect of plasmon field on the coherent lattice phonon oscillation in electron-beam fabricated gold nanoparticle pairs. Nano Lett 2007;7:3227–34.Google Scholar

[28]

Popov AK, Myslivets SA, Shalaev VM. Coherent nonlinearoptical energy transfer and backward-wave optical parametric generation in negative-index metamaterials. Physica B 2010;405:2999–3002.Google Scholar

[29]

Lippitz M, van Dijk MA, Orrit M. Third-harmonic generation from single gold nanoparticles. Nano Lett 2005;5:799–802.Google Scholar

[30]

Hanke T, Krauss G, Trautlein D, Wild B, Bratschitsch R, Leitenstorfer A. Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses. Phys Rev Lett 2009;103:257404.Google Scholar

[31]

Canfield BK, Hush H, Laukkanen J, Bai B, Kuittinen M, Turunen J, Kauranen M. Local field asymmetry drives secondharmonic generation in non-centrosymmetric nanodimers. Nano Lett 2007;7:1251–5.Google Scholar

[32]

Klein MW, Enkrich G, Wegener M, Linden S. Secondharmonic generation from magnetic metamaterials. Science 2006;313:502–4.Google Scholar

[33]

Chen PY, Alù A. Optical nanoantenna arrays loaded with nonlinear materials. Phys Rev B 2010;82:235405.Google Scholar

[34]

Novotny L. Effective wavelength scaling for optical antennas. Phys Rev Lett 2007;98:266802.Google Scholar

[35]

Huang JS, Feichtner T, Biagioni P, Hecht B. Impedance matching and emission properties of nanoantennas in an optical nanocircuit. Nano Lett 2009;9:1897–902.Google Scholar

[36]

Zhao Y, Engheta N, Alù A. Effects of shape and loading of optical nanoantennas on their sensitivity and radiation properties. JOSA B 2011;28:1266–74.Google Scholar

[37]

Giannini V, Fernández-Domínguez AI, Heck SC, Maier SA. Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters. Chem Rev. 2011;111:3888–912.Google Scholar

[38]

KnightMW,SobhaniH,NordlanderP,HalasNJ.Photodetection with active optical antennas. Science 2011;332:702–4.Google Scholar

[39]

Kotter DK, Novack SD, Slafer WD, Pinhero PJ. Theory and Manufacturing processes of solar nanoantenna electromagnetic collectors. J Sol Energy Eng 2010;132:011014.Google Scholar

[40]

Harutyunyan H, Volpe G, Quidant R, Novotny L. Enhancing the Nonlinear optical response using multifrequency gold-nanowire antennas. Phys Rev Lett 2012;108:217403.Google Scholar

[41]

Malyuskin O, Fusco V, Schuchinsky AG. Microwave phase conjugation using nonlinearly loaded wire arrays. IEEE Trans Antenna Propagat 2006;54:192–203.Google Scholar

[42]

Shadrivov IV, Morrison SK, Kivshar YS. Tunable split-ring resonators for nonlinear negative-index metamaterials. Opt Express 2006;14:9344–9.Google Scholar

[43]

Powell DA, Shadrivov IV, Kivshar YS. Self-tuning mechanisms of nonlinear split-ring resonators. Appl Phys Lett 2007;91:144107.Google Scholar

[44]

Slobozhanyuk AP, Kapitanova PV, Shadrivov IV, Belov PA, Kivshar YS. Metamaterials with tunable nonlinearity. JETP Lett 2012;95:613–7.Google Scholar

[45]

Lapine M, Shadrivov I, Kivshar Y. Wide-band negative permeability of nonlinear metamaterials. Sci Rep 2012;2:1–4.Google Scholar

[46]

Boyd RW, Gehr RJ, Fischer GL, Sipe JE. Nonlinear optical properties of nanocomposite materials. Pure Appl Opt 1996;5:505–12.Google Scholar

[47]

Smith DD, Fischer G, Boyd RW, Gregory DA. Cancellation of photoinduced absorption in metal nanoparticle composites through a counterintuitive consequence of local field effects. J Opt Soc Am B 1997;14:1625–31.Google Scholar

[48]

Bharadwaj P, Deutsch B, Novotny L. Optical antennas. Adv Opt Photon 2009; 1:438–83.Google Scholar

[49]

Scholl JA, Koh AL, Dionne JA. Quantum plasmon resonances of individual metallic nanoparticles. Nature 2012;483:421–8.Google Scholar

[50]

Ciracì C, Hill RT, Mock JJ, Urzhumov Y, Fernández-Domínguez AI, Maier SA, Pendry JB, Chilkoti A, Smith DR. Probing the ultimate limits of plasmonic enhancement. Science 2012;337:1072–4.Google Scholar

[51]

Renger J, Quidant R, Novotny L. Enhanced nonlinear response from metal surfaces. Opt Express 2011;19:1777–85.Google Scholar

[52]

Palomba S, Danckwerts M, Novotny L. Nonlinear plasmonics with gold nanoparticle antennas. J Opt A: Pure Appl Opt 2009; 11:114030.Google Scholar

[53]

Esteban R, Borisov AG, Nordlander P, Aizpurua J. Bridging quantum and classical plasmonics with a quantum-corrected model. Nature Commun 2012;3:825.Google Scholar

[54]

Liu N, Langguth L, Weiss T, Kastel J, Fleischhauer M, Pfau T, Giessen H. Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. Nat Mater 2009;8:758–62.Google Scholar

[55]

Zhang S, Genov DA, Want Y, Liu M, Zhang X. Plasmoninduced transparency in metamaterials. Phys Rev Lett 2008; 101:047401.Google Scholar

[56]

Mukherjee S, Sobhani H, Lassiter JB, Nordlander P, Halas NJ. Fano shells: nanoparticles with built-in Fano resonances. Nano Lett 2010;10:2694–701.Google Scholar

[57]

Argyropoulos C, Chen PY, Monticone F, D’Aguanno G, Alù A. Nonlinear plasmonic cloaks to realize giant all-optical scattering switching. Phys Rev Lett 2012;108:263905.Google Scholar

[58]

Chang DE, Sorensen AS, Demler EA, Lukin MD. A single photon transistor using nanoscale surface plasmons. Nat Phys 2007;3:807–12.Google Scholar

[59]

Johnson PB, Christy RW. Optical constants of the noble metals. Phys Rev B 1972;6:4370–9.Google Scholar

[60]

CST Microwave Studio v. 2012: http://www.cst.com/. Accessed on 1 November 2012.Google Scholar

[61]

Fischer H, Martin OJF. Engineering the optical response of plasmonic nanoantennas. Opt Express 2008;16:9144–54.Google Scholar

[62]

Alù A, Engheta N. Optical wave interaction with two-dimensional array of plasmonic nanoparticles. In: Maradudin AA, editor. Structured surfaces as optical metamaterials. Chapter 3. Cambridge: Cambridge University Press; 2011, pp. 58–93.Google Scholar

[63]

Chen PY, Alù A. Subwavelength imaging using phase-conjugating nonlinear nanoantenna arrays. Nano Lett 2011;11: 5514–8.Google Scholar

[64]

Belov PA, Simovski CR. Homogenization of electromagnetic crystals formed by uniaxial resonant scatterers. Phys Rev E 2005;72:026615.Google Scholar

[65]

Boyd RW. Nonlinear optics. 3rd edition. Boston, MA: Academic Press; 2008.Google Scholar

[66]

Pendry J. Negative refraction makes a perfect lens. Phys Rev Lett 2000;85:3966–9.Google Scholar

[67]

Maslovski S, Tretyakov S. Phase conjugation and perfect lensing. J Appl Phys 2003;94:4241–3.Google Scholar

[68]

Malyuskin O, Fusco V, Schuchinsky A. Phase conjugating wire FSS lens. IEEE Trans Antenna Propagat 2006;54:1399–404.Google Scholar

[69]

Katko AR, Gu S, Barrett J, Popa B, Shvets G, Cummer SA. Phase conjugation and negative refraction using nonlinear active metamaterials. Phys Rev Lett 2010; 105:123905.Google Scholar

[70]

Pendry JB. Time reversal and negative refraction. Science 2008;322:71–3.Google Scholar

[71]

Yariv A. Phase conjugate optics and real-time holography. IEEE J Quan Electron 1978; 14:650–60.Google Scholar

[72]

Palomba S, Zhang S, Park Y, Bartal G, Yin X, Zhang X. Optical negative refraction by four-wave mixing in thin metallic nanostructures. Nat Mater 2011;11:34–8.Google Scholar

[73]

Sirtori C, Capasso F, Sivco DL, Cho AY. Giant, triply resonant, third-order nonlinear susceptibility chi 3 omega (3) in coupled quantum wells. Phys Rev Lett 1992;68:1010–3.Google Scholar

[74]

Hamazaki J, Matsui S, Kunugita H, Ema K, Kanazawa H, Tachibana T, Kikuchi A, Kishino K. Ultrafast intersubband relaxation and nonlinear susceptibility at 1.55 *μ*m in GaN/AlN multiple-quantum wells. Appl Phys Lett 2004;84:1102–4.Google Scholar

[75]

Chen PY, Farhat M, Alù A. Bistable and self-tunable negativeindex metamaterials at optical frequencies. Phys Rev Lett 2011;106:105503.Google Scholar

[76]

Argyropoulos C, Chen PY, D’Aguanno G, Engheta N, Alù A. Boosting optical nonlinearities in epsilon-near-zero plasmonic channels. Phys Rev B 2012;85:045129.Google Scholar

[77]

Maksymov IS, Miroshnichenko AE, Kivshar YS. Actively tunable bistable optical Yagi-Uda nanoantenna. Opt Express 2012;20:163243.Google Scholar

[78]

Drachev VP, Buin AK, Nakotte H, Shalaev VM. Size Dependent *χ*^{(3)} for conduction electrons in Ag nanoparticles. Nano Lett 2004;4:1535.Google Scholar