[1]
Hutter E, Fendler JH. Exploitation of localized surface plasmon resonance. Adv Mater 2004;16:1685–706.Google Scholar
[2]
Sweatlock LA, Maier SA, Atwarter HA, Penninkhof JJ, Polman A. Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles. Phys Rev B 2005;71:235408.Google Scholar
[3]
Alù A, Engheta N. Theory of linear chains of metamaterial/plasmonic particles as subdiffraction optical nanotransmission lines. Phys Rev B 2006;74:205436.Google Scholar
[4]
Jain PK, Huang X, El-Sayed H, El-Sayed MA. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc Chem Res 2008;41:1578–86.Google Scholar
[5]
Ebbesen, TW, Lezec HJ, Ghaemi HF, Thio T, Wolff PA. Extraordinary optical transmission through sub-wavelength hole arrays. Nature (Lond) 1998;391:667–9.Google Scholar
[6]
Scalora M, D’Aguanno G, Mattiucci N, Bloemer MJ, de Ceglia D, Centini M, Mandatori A, Sibilia C, Akozbek N, Cappeddu MG, Fowler M, Haus JW. Negative refraction and sub-wavelength focusing in the visible range using transparent metallodielectric stacks. Opt Express 2007;15:508–23.Google Scholar
[7]
Shalaev VM. Optical negative-index metamaterials. Nat Photon 2007;1:41–8.Google Scholar
[8]
Ricard D, Roussignol O, Flytzanis C. Surface-mediated enhancement of optical phase conjugation in metal colloids. Opt Lett 1985;10:511–3.Google Scholar
[9]
Klar T, Perner M, Grosse S, Plessen G, Spirkl W, Feldmann J. Surface-plasmon resonances in single metallic nanoparticles. Phys Rev Lett 1998;80:4249–52.Google Scholar
[10]
Kelly KL, Coronado E, Zhao LL, Schatz GC. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 2003;107:668–77.Google Scholar
[11]
Pu Y, Grange R, Hsieh CL, Psaltis D. Nonlinear optical properties of core-shell nanocavities for enhanced second-harmonic generation. Phys Rev Lett 2010;104:207402.Google Scholar
[12]
Danckwerts M, Novotny L. Optical frequency mixing at coupled gold nanoparticles. Phys Rev Lett 2007;98:026104.Google Scholar
[13]
Palomba S, Novotny L. Near-field imaging with a localized nonlinear light source. Nano Lett 2009;11:3801–4.Google Scholar
[14]
Navarro-Cia M, Maier SA. Broad-band near-infrared plasmonic nanoantennas for higher harmonic generation. ACS Nano 2012;6:3537–44.Google Scholar
[15]
Maier SA. Plasmonic field enhancement and SERS in the effective mode volume picture. Opt Express 2006;14:1957–64.Google Scholar
[16]
Muhlschlegel P, Eisler HJ, Martin OJF, Hecht B, Pohl DW. Resonant optical antennas. Science 2005;308:1607–9.Google Scholar
[17]
Novotny L, Hulst NV. Antennas for light. Nat Photonics 2011;5:83–90.Google Scholar
[18]
Biagioni P, Huang JS, Hecht B. Nanoantennas for visible and infrared radiation. Rep Prog Phys 2012;75:024402.Google Scholar
[19]
Alù A, Engheta N. Tuning the scattering response of optical nanoantennas with nanocircuit loads. Nat Photonics 2008;2:307–10.Google Scholar
[20]
Alù A, Engheta N. Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas. Phys Rev Lett 2008;101:043901.Google Scholar
[21]
Sorger VJ, Oulton RF, Yao J, Bartal G, Zhang X. Submicrometer in-plane integrated surface plasmon cavities. Nano Lett 2009;9:3489–93.Google Scholar
[22]
Fang N, Lee H, Sun C, Zhang X. Sub-diffraction-limited optical imaging with a silver superlens. Science 2005;308:534–7.Google Scholar
[23]
Shvets G, Urzhumov YA. Engineering the electromagnetic properties of periodic nanostructures using electrostatic resonances. Phys Rev Lett 2004;93:243902.Google Scholar
[24]
Alù A, Engheta N. Achieving transparency with plasmonic and metamaterial coatings. Phys Rev E 2005;72:016623.Google Scholar
[25]
Cai W, Chettiar UK, Kildshev AV, Shalaev VM. Optical cloaking with metamaterials. Nat Photon 2007;1:224–7.Google Scholar
[26]
Engheta N, Salandrino A, Alù A. Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors. Phys Rev Lett 2005;95:095504.Google Scholar
[27]
Huang W, Quian W, Jain PK, El-Sayed MA. The effect of plasmon field on the coherent lattice phonon oscillation in electron-beam fabricated gold nanoparticle pairs. Nano Lett 2007;7:3227–34.Google Scholar
[28]
Popov AK, Myslivets SA, Shalaev VM. Coherent nonlinearoptical energy transfer and backward-wave optical parametric generation in negative-index metamaterials. Physica B 2010;405:2999–3002.Google Scholar
[29]
Lippitz M, van Dijk MA, Orrit M. Third-harmonic generation from single gold nanoparticles. Nano Lett 2005;5:799–802.Google Scholar
[30]
Hanke T, Krauss G, Trautlein D, Wild B, Bratschitsch R, Leitenstorfer A. Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses. Phys Rev Lett 2009;103:257404.Google Scholar
[31]
Canfield BK, Hush H, Laukkanen J, Bai B, Kuittinen M, Turunen J, Kauranen M. Local field asymmetry drives secondharmonic generation in non-centrosymmetric nanodimers. Nano Lett 2007;7:1251–5.Google Scholar
[32]
Klein MW, Enkrich G, Wegener M, Linden S. Secondharmonic generation from magnetic metamaterials. Science 2006;313:502–4.Google Scholar
[33]
Chen PY, Alù A. Optical nanoantenna arrays loaded with nonlinear materials. Phys Rev B 2010;82:235405.Google Scholar
[34]
Novotny L. Effective wavelength scaling for optical antennas. Phys Rev Lett 2007;98:266802.Google Scholar
[35]
Huang JS, Feichtner T, Biagioni P, Hecht B. Impedance matching and emission properties of nanoantennas in an optical nanocircuit. Nano Lett 2009;9:1897–902.Google Scholar
[36]
Zhao Y, Engheta N, Alù A. Effects of shape and loading of optical nanoantennas on their sensitivity and radiation properties. JOSA B 2011;28:1266–74.Google Scholar
[37]
Giannini V, Fernández-Domínguez AI, Heck SC, Maier SA. Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters. Chem Rev. 2011;111:3888–912.Google Scholar
[38]
KnightMW,SobhaniH,NordlanderP,HalasNJ.Photodetection with active optical antennas. Science 2011;332:702–4.Google Scholar
[39]
Kotter DK, Novack SD, Slafer WD, Pinhero PJ. Theory and Manufacturing processes of solar nanoantenna electromagnetic collectors. J Sol Energy Eng 2010;132:011014.Google Scholar
[40]
Harutyunyan H, Volpe G, Quidant R, Novotny L. Enhancing the Nonlinear optical response using multifrequency gold-nanowire antennas. Phys Rev Lett 2012;108:217403.Google Scholar
[41]
Malyuskin O, Fusco V, Schuchinsky AG. Microwave phase conjugation using nonlinearly loaded wire arrays. IEEE Trans Antenna Propagat 2006;54:192–203.Google Scholar
[42]
Shadrivov IV, Morrison SK, Kivshar YS. Tunable split-ring resonators for nonlinear negative-index metamaterials. Opt Express 2006;14:9344–9.Google Scholar
[43]
Powell DA, Shadrivov IV, Kivshar YS. Self-tuning mechanisms of nonlinear split-ring resonators. Appl Phys Lett 2007;91:144107.Google Scholar
[44]
Slobozhanyuk AP, Kapitanova PV, Shadrivov IV, Belov PA, Kivshar YS. Metamaterials with tunable nonlinearity. JETP Lett 2012;95:613–7.Google Scholar
[45]
Lapine M, Shadrivov I, Kivshar Y. Wide-band negative permeability of nonlinear metamaterials. Sci Rep 2012;2:1–4.Google Scholar
[46]
Boyd RW, Gehr RJ, Fischer GL, Sipe JE. Nonlinear optical properties of nanocomposite materials. Pure Appl Opt 1996;5:505–12.Google Scholar
[47]
Smith DD, Fischer G, Boyd RW, Gregory DA. Cancellation of photoinduced absorption in metal nanoparticle composites through a counterintuitive consequence of local field effects. J Opt Soc Am B 1997;14:1625–31.Google Scholar
[48]
Bharadwaj P, Deutsch B, Novotny L. Optical antennas. Adv Opt Photon 2009; 1:438–83.Google Scholar
[49]
Scholl JA, Koh AL, Dionne JA. Quantum plasmon resonances of individual metallic nanoparticles. Nature 2012;483:421–8.Google Scholar
[50]
Ciracì C, Hill RT, Mock JJ, Urzhumov Y, Fernández-Domínguez AI, Maier SA, Pendry JB, Chilkoti A, Smith DR. Probing the ultimate limits of plasmonic enhancement. Science 2012;337:1072–4.Google Scholar
[51]
Renger J, Quidant R, Novotny L. Enhanced nonlinear response from metal surfaces. Opt Express 2011;19:1777–85.Google Scholar
[52]
Palomba S, Danckwerts M, Novotny L. Nonlinear plasmonics with gold nanoparticle antennas. J Opt A: Pure Appl Opt 2009; 11:114030.Google Scholar
[53]
Esteban R, Borisov AG, Nordlander P, Aizpurua J. Bridging quantum and classical plasmonics with a quantum-corrected model. Nature Commun 2012;3:825.Google Scholar
[54]
Liu N, Langguth L, Weiss T, Kastel J, Fleischhauer M, Pfau T, Giessen H. Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. Nat Mater 2009;8:758–62.Google Scholar
[55]
Zhang S, Genov DA, Want Y, Liu M, Zhang X. Plasmoninduced transparency in metamaterials. Phys Rev Lett 2008; 101:047401.Google Scholar
[56]
Mukherjee S, Sobhani H, Lassiter JB, Nordlander P, Halas NJ. Fano shells: nanoparticles with built-in Fano resonances. Nano Lett 2010;10:2694–701.Google Scholar
[57]
Argyropoulos C, Chen PY, Monticone F, D’Aguanno G, Alù A. Nonlinear plasmonic cloaks to realize giant all-optical scattering switching. Phys Rev Lett 2012;108:263905.Google Scholar
[58]
Chang DE, Sorensen AS, Demler EA, Lukin MD. A single photon transistor using nanoscale surface plasmons. Nat Phys 2007;3:807–12.Google Scholar
[59]
Johnson PB, Christy RW. Optical constants of the noble metals. Phys Rev B 1972;6:4370–9.Google Scholar
[60]
CST Microwave Studio v. 2012: http://www.cst.com/. Accessed on 1 November 2012.Google Scholar
[61]
Fischer H, Martin OJF. Engineering the optical response of plasmonic nanoantennas. Opt Express 2008;16:9144–54.Google Scholar
[62]
Alù A, Engheta N. Optical wave interaction with two-dimensional array of plasmonic nanoparticles. In: Maradudin AA, editor. Structured surfaces as optical metamaterials. Chapter 3. Cambridge: Cambridge University Press; 2011, pp. 58–93.Google Scholar
[63]
Chen PY, Alù A. Subwavelength imaging using phase-conjugating nonlinear nanoantenna arrays. Nano Lett 2011;11: 5514–8.Google Scholar
[64]
Belov PA, Simovski CR. Homogenization of electromagnetic crystals formed by uniaxial resonant scatterers. Phys Rev E 2005;72:026615.Google Scholar
[65]
Boyd RW. Nonlinear optics. 3rd edition. Boston, MA: Academic Press; 2008.Google Scholar
[66]
Pendry J. Negative refraction makes a perfect lens. Phys Rev Lett 2000;85:3966–9.Google Scholar
[67]
Maslovski S, Tretyakov S. Phase conjugation and perfect lensing. J Appl Phys 2003;94:4241–3.Google Scholar
[68]
Malyuskin O, Fusco V, Schuchinsky A. Phase conjugating wire FSS lens. IEEE Trans Antenna Propagat 2006;54:1399–404.Google Scholar
[69]
Katko AR, Gu S, Barrett J, Popa B, Shvets G, Cummer SA. Phase conjugation and negative refraction using nonlinear active metamaterials. Phys Rev Lett 2010; 105:123905.Google Scholar
[70]
Pendry JB. Time reversal and negative refraction. Science 2008;322:71–3.Google Scholar
[71]
Yariv A. Phase conjugate optics and real-time holography. IEEE J Quan Electron 1978; 14:650–60.Google Scholar
[72]
Palomba S, Zhang S, Park Y, Bartal G, Yin X, Zhang X. Optical negative refraction by four-wave mixing in thin metallic nanostructures. Nat Mater 2011;11:34–8.Google Scholar
[73]
Sirtori C, Capasso F, Sivco DL, Cho AY. Giant, triply resonant, third-order nonlinear susceptibility chi 3 omega (3) in coupled quantum wells. Phys Rev Lett 1992;68:1010–3.Google Scholar
[74]
Hamazaki J, Matsui S, Kunugita H, Ema K, Kanazawa H, Tachibana T, Kikuchi A, Kishino K. Ultrafast intersubband relaxation and nonlinear susceptibility at 1.55 μm in GaN/AlN multiple-quantum wells. Appl Phys Lett 2004;84:1102–4.Google Scholar
[75]
Chen PY, Farhat M, Alù A. Bistable and self-tunable negativeindex metamaterials at optical frequencies. Phys Rev Lett 2011;106:105503.Google Scholar
[76]
Argyropoulos C, Chen PY, D’Aguanno G, Engheta N, Alù A. Boosting optical nonlinearities in epsilon-near-zero plasmonic channels. Phys Rev B 2012;85:045129.Google Scholar
[77]
Maksymov IS, Miroshnichenko AE, Kivshar YS. Actively tunable bistable optical Yagi-Uda nanoantenna. Opt Express 2012;20:163243.Google Scholar
[78]
Drachev VP, Buin AK, Nakotte H, Shalaev VM. Size Dependent χ(3) for conduction electrons in Ag nanoparticles. Nano Lett 2004;4:1535.Google Scholar