[1]
Turner APF. Biosensors: sense and sensibility. Chem Soc Rev 2013;42:3184–96.Google Scholar
[2]
Gauglitz G. Point-of-care platforms. Annu Rev Anal Chem 2014;7:297–315.Google Scholar
[3]
Shukla AA, Thömmes J. Recent advances in large-scale production of monoclonal antibodies and related proteins. Trends Biotechnol 2010;28:253–61.Google Scholar
[4]
Stoltenburg R, Reinemann C, Strehlitz B. SELEX – a (r)evolutionary method to generate high-affinity nucleic acid ligands. Biomol Eng 2007;24:381–403.Google Scholar
[5]
Ray S, Mehta G, Srivastava S. Label-free detection techniques for protein microarrays: prospects, merits and challenges. Proteomics 2010;10:731–48.Google Scholar
[6]
Sang S, Wang Y, Feng Q, Wei Y, Ji J, Zhang W. Progress of new label-free techniques for biosensors: a review. Crit Rev Biotechnol 2016;36:465–81.Google Scholar
[7]
Gauglitz G. Direct optical detection in bioanalysis: an update. Anal Bioanal Chem 2010;398:2363–72.Google Scholar
[8]
Tokel O, Inci F, Demirci U. Advances in plasmonic technologies for point of care applications. Chem Rev 2014;114:5728–52.Google Scholar
[9]
Karlsson R, Katsamba PS, Nordin H, Pol E, Myszka DG. Analyzing a kinetic titration series using affinity biosensors. Anal Biochem 2006;349:136–47.Google Scholar
[10]
Rich RL, Myszka DG. Survey of the 2009 commercial optical biosensor literature. J Mol Recognit 2011;24:892–914.Google Scholar
[11]
Fan X, White IM, Shopova SI, Zhu H, Suter JD, Sun Y. Sensitive optical biosensors for unlabeled targets: a review. Anal Chim Acta 2008;620:8–26.Google Scholar
[12]
Brolo AG. Plasmonics for future biosensors. Nat Photon 2012;6:709–13.Google Scholar
[13]
Lavín Á, Casquel R, Sanza FJ, Laguna MF, Holgado M. Efficient design and optimization of bio-photonic sensing cells (BICELLs) for label free biosensing. Sensors Actuators B Chem 2013;176:753–60.Google Scholar
[14]
Choi CJ, Xu Z, Wu HY, Liu GL, Cunningham BT. Surface-enhanced Raman nanodomes. Nanotechnology 2010;21:415301.Google Scholar
[15]
Ge C, Lu M, George S, et al. External cavity laser biosensor. Lab Chip 2013;13:1247–56.Google Scholar
[16]
Salina M, Giavazzi F, Lanfranco R, et al. Multi-spot, label-free immunoassay on reflectionless glass. Biosens Bioelectron 2015;74:539–45.Google Scholar
[17]
Coskun AF, Cetin AE, Galarreta BC, Alvarez DA, Altug H, Ozcan A. Lensfree optofluidic plasmonic sensor for real-time and label-free monitoring of molecular binding events over a wide field-of-view. Sci Rep 2014;4:6789.Google Scholar
[18]
Holgado M, Barrios CA, Ortega FJ, et al. Label-free biosensing by means of periodic lattices of high aspect ratio SU-8 nano-pillars. Biosens Bioelectron 2010;25:2553–8.Google Scholar
[19]
Sanza FJ, Holgado M, Ortega FJ, et al. Bio-Photonic Sensing Cells over transparent substrates for anti-gestrinone antibodies biosensing. Biosens Bioelectron 2011;26:4842–7.Google Scholar
[20]
Giavazzi F, Salina M, Cerbino R, et al. Multispot, label-free biodetection at a phantom plastic-water interface. Proc Natl Acad Sci 2013;110:9350–5.Google Scholar
[21]
King KR, Grazette LP, Paltoo DN, et al. Point-of-care technologies for precision cardiovascular care and clinical research: National Heart, Lung, and Blood Institute Working Group. JACC Basic Transl Sci 2016;1:73–86.Google Scholar
[22]
Im H, Shao H, Il Park Y, et al. Label-free detection and molecular profiling of exosomes with a nano-plasmonic sensor. Nat Biotechnol 2014;32:490–5.Google Scholar
[23]
Fernández F, Hegnerová K, Piliarik M, Sanchez-Baeza F, Homola J, Marco MP. A label-free and portable multichannel surface plasmon resonance immunosensor for on site analysis of antibiotics in milk samples. Biosens Bioelectron 2010;26:1231–8.Google Scholar
[24]
Gallegos D, Long KD, Yu H, et al. Label-free biodetection using a smartphone. Lab Chip 2013;13:2124–32.Google Scholar
[25]
Giavazzi F, Salina M, Ceccarello E, et al. A fast and simple label-free immunoassay based on a smartphone. Biosens Bioelectron 2014;58:395–402.Google Scholar
[26]
Vaisocherová H, Brynda E, Homola J. Functionalizable low-fouling coatings for label-free biosensing in complex biological media: advances and applications. Anal Bioanal Chem 2015;407:3927–53.Google Scholar
[27]
Piliarik M, Bocková M, Homola J. Surface plasmon resonance biosensor for parallelized detection of protein biomarkers in diluted blood plasma. Biosens Bioelectron 2010;26:1656–61.Google Scholar
[28]
Ahn S, Freedman DS, Massari P, Cabodi M, Ünlü MS. A mass-tagging approach for enhanced sensitivity of dynamic cytokine detection using a label-free biosensor. Langmuir 2013;29:5369–76.Google Scholar
[29]
Zheng J, He L. Surface-enhanced Raman spectroscopy for the chemical analysis of food. Compr Rev Food Sci Food Saf 2014;13:317–28.Google Scholar
[30]
Rau S, Gauglitz G. Reflectometric interference spectroscopy (RIfS) as a new tool to measure in the complex matrix milk at low analyte concentration. Anal Bioanal Chem 2012;402:529–36.Google Scholar
[31]
Salina M, Giavazzi F, Ceccarello E, et al. Multi-spot, label-free detection of viral infection in complex media by a non-reflecting surface. Sensors Actuators B Chem 2016;223:957–62.Google Scholar
[32]
Frimat M, Tabarin F, Dimitrov JD, et al. Complement activation by heme as a secondary hit for atypical hemolytic uremic syndrome. Blood 2013;122:282–92.Google Scholar
[33]
Arima Y, Toda M, Iwata H. Surface plasmon resonance in monitoring of complement activation on biomaterials. Adv Drug Deliv Rev 2011;63:988–99.Google Scholar
[34]
Liu D, Wang Z, Jiang X. Gold nanoparticles for the colorimetric and fluorescent detection of ions and small organic molecules. Nanoscale 2011;3:1421.Google Scholar
[35]
Xia F, Zuo X, Yang R, et al. Colorimetric detection of DNA, small molecules, proteins, and ions using unmodified gold nanoparticles and conjugated polyelectrolytes. Proc Natl Acad Sci 2010;107:10837.Google Scholar
[36]
Korfmacher WA. Liquid chromatography-mass spectrometry. J Am Soc Mass Spectrom 2007;18:1135–36.Google Scholar
[37]
Zeng S, Baillargeat D, Ho HP, Yong KT. Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications. Chem Soc Rev 2014;43:3426–52.Google Scholar
[38]
Fan X, White IM. Optofluidic microsystems for chemical and biological analysis. Nat Photon 2011;5:591–7.Google Scholar
[39]
Couture M, Zhao SS, Masson JF. Modern surface plasmon resonance for bioanalytics and biophysics. Phys Chem Chem Phys 2013;15:11190–216.Google Scholar
[40]
Guerreiro JRL, Frederiksen M, Bochenkov VE, De Freitas V, Ferreira Sales MG, Sutherland DS. Multifunctional biosensor based on localized surface plasmon resonance for monitoring small molecule-protein interaction. ACS Nano 2014;8:7958–67.Google Scholar
[41]
Sreekanth KV, Alapan Y, ElKabbash M, et al. Extreme sensitivity biosensing platform based on hyperbolic metamaterials. Nat Mater 2016;15:621–7.Google Scholar
[42]
Song D, Yang R, Wang C, Xiao R, Long F. Reusable nanosilver-coated magnetic particles for ultrasensitive SERS-based detection of malachite green in water samples. Sci Rep 2016;6:22870.Google Scholar
[43]
Lanfranco R, Giavazzi F, Salina M, et al. Selective adsorption on fluorinated plastic enables the optical detection of molecular pollutants in water. Phys Rev Appl 2016;5:54012.Google Scholar
[44]
Valentine J, Zhang S, Zentgraf T, et al. Three-dimensional optical metamaterial with a negative refractive index. Nature 2008;455:376–9.Google Scholar
[45]
Qu LL, Li DW, Xue JQ, Zhai WL, Fossey JS, Long YT. Batch fabrication of disposable screen printed SERS arrays. Lab Chip 2012;12:876–81.Google Scholar
[46]
Lanfranco R, Giavazzi F, Salina M, Di Nicolò E, Buscaglia M. Optical detection of surfactants by means of reflective phantom interface method. In: Cham ZG., ed. Sensors. Switzerland: Springer International Publishing, 2015;319:33–7.Google Scholar
[47]
Nabok A, Tsargorodskaya A, Mustafa MK, Székács I, Starodub NF, Székács A. Detection of low molecular weight toxins using an optical phase method of ellipsometry. Sensors Actuators B Chem 2011;154:232–37.Google Scholar
[48]
Park J, Bang D, Jang K, Kim E, Haam S, Na S. Multimodal label-free detection and discrimination for small molecules using a nanoporous resonator. Nat Commun 2014;5:3456.Google Scholar
[49]
Li D, Qu L, Zhai W, Xue J, Fossey JS, Long Y. Facile on-site detection of substituted aromatic pollutants in water using thin layer chromatography combined with surface-enhanced Raman spectroscopy. Environ Sci Technol 2011;45:4046–52.Google Scholar
[50]
Carrascosa LG, Huertas CS, Lechuga LM. Prospects of optical biosensors for emerging label-free RNA analysis. TrAC Trends Anal Chem 2016;80:177–89.Google Scholar
[51]
D’Agata R, Spoto G. Surface plasmon resonance imaging for nucleic acid detection. Anal Bioanal Chem 2013;405:573–84.Google Scholar
[52]
Šípová H, Homola J. Surface plasmon resonance sensing of nucleic acids: a review. Anal Chim Acta 2013;773:9–23.Google Scholar
[53]
Cialla D, Pollok S, Steinbrücker C, Weber K, Popp J. SERS-based detection of biomolecules. Nanophotonics 2014;3:383–411.Google Scholar
[54]
Johnson BN, Mutharasan R. Biosensor-based microRNA detection: techniques, design, performance, and challenges. Analyst 2014;139:1576–88.Google Scholar
[55]
Graybill RM, Bailey RC. Emerging biosensing approaches for microRNA analysis. Anal Chem 2016;88:431–50.Google Scholar
[56]
Chandrasekaran AR, Wady H, Subramanian HKK. Nucleic acid nanostructures for chemical and biological sensing. Small 2016;12:2689–700.Google Scholar
[57]
MacConaghy KI, Chadly DM, Stoykovich MP, Kaar JL. Label-free detection of missense mutations and methylation differences in the p53 gene using optically diffracting hydrogels. Analyst 2015;140:6354–62.Google Scholar
[58]
Halpern AR, Chen Y, Corn RM, Kim D. Surface plasmon resonance phase imaging measurements of patterned monolayers and DNA adsorption onto microarrays. Anal Chem 2011;83:2801–6.Google Scholar
[59]
Joshi GK, Deitz-McElyea S, Liyanage T, et al. Label-free nanoplasmonic-based short noncoding RNA sensing at attomolar concentrations allows for quantitative and highly specific assay of microRNA-10b in biological fluids and circulating exosomes. ACS Nano 2015;9:11075–89.Google Scholar
[60]
Daaboul GG, Vedula RS, Ahn S, et al. LED-based interferometric reflectance imaging sensor for quantitative dynamic monitoring of biomolecular interactions. Biosens Bioelectron 2011;26:2221–7.Google Scholar
[61]
Özkumur E, Ahn S, Yalçın A, et al. Label-free microarray imaging for direct detection of DNA hybridization and single-nucleotide mismatches. Biosens Bioelectron 2010;25:1789–95.Google Scholar
[62]
Ahn S, Freedman DS, Zhang X, Ünlü MS. Methods in molecular biology. New York, NY, USA, Springer, 2013;1039:181–200.Google Scholar
[63]
Nava G, Ceccarello E, Giavazzi F, et al. Label-free detection of DNA single-base mismatches using a simple reflectance-based optical technique. Phys Chem Chem Phys 2016;18:13395–402.Google Scholar
[64]
Papadopoulou E, Bell SEJ. Label-free detection of single-base mismatches in DNA by surface-enhanced Raman spectroscopy. Angew Chem Int Ed 2011;50:9058–61.Google Scholar
[65]
Guerrini L, Krpetić Ž, van Lierop D, Alvarez-Puebla RA, Graham D. Direct surface-enhanced Raman scattering analysis of DNA duplexes. Angew Chem Int Ed 2015;54:1144–8.Google Scholar
[66]
Thacker VV, Herrmann LO, Sigle DO, et al. DNA origami based assembly of gold nanoparticle dimers for surface-enhanced Raman scattering. Nat Commun 2014;5:3448.Google Scholar
[67]
Hiep HM, Kerman K, Endo T, Saito M, Tamiya E. Nanostructured biochip for label-free and real-time optical detection of polymerase chain reaction. Anal Chim Acta 2010;661:111–6.Google Scholar
[68]
Joshi GK, Deitz-McElyea S, Johnson M, Mali S, Korc M, Sardar R. Highly specific plasmonic biosensors for ultrasensitive microRNA detection in plasma from pancreatic cancer patients. Nano Lett 2014;14:6955–63.Google Scholar
[69]
Wang Y, MacLachlan E, Nguyen BK, Fu G, Peng C, Chen JIL. Direct detection of microRNA based on plasmon hybridization of nanoparticle dimers. Analyst 2015;140:1140.Google Scholar
[70]
Marín AG, García-Mendiola T, Bernabeu CN, et al. Gallium plasmonic nanoparticles for label-free DNA and single nucleotide polymorphism sensing. Nanoscale 2016;8:9842–51.Google Scholar
[71]
Bonnet G, Tyagi S, Libchaber A, Kramer FR. Thermodynamic basis of the enhanced specificity of structured DNA probes. Proc Natl Acad Sci 1999;96:6171–6.Google Scholar
[72]
Ranallo S, Rossetti M, Plaxco KW, Vallée-Bélisle A, Ricci F. A modular, DNA-based beacon for single-step fluorescence detection of antibodies and other proteins. Angew Chem Int Ed 2015;54:13214–8.Google Scholar
[73]
Nöll G, Su Q, Heidel B, Yu Y. A reusable sensor for the label-free detection of specific oligonucleotides by surface plasmon fluorescence spectroscopy. Adv Healthc Mater 2014;3:42–6.Google Scholar
[74]
Li F, Pei H, Wang L, et al. Nanomaterial-based fluorescent dna analysis: a comparative study of the quenching effects of graphene oxide, carbon nanotubes, and gold nanoparticles. Adv Funct Mater 2013;23:4140.Google Scholar
[75]
Huang Y, Yang HY, Ai Y. DNA single-base mismatch study using graphene oxide nanosheets-based fluorometric biosensors. Anal Chem 2015;87:9132.Google Scholar
[76]
Su Q, Wesner D, Schönherr H, Nöll G. Molecular beacon modified sensor chips for oligonucleotide detection with optical readout. Langmuir 2014;30:14360–7.Google Scholar
[77]
Ngo HT, Wang HN, Fales AM, Vo-Dinh T. Label-free DNA biosensor based on SERS Molecular Sentinel on Nanowave chip. Anal Chem 2013;85:6378–83.Google Scholar
[78]
Yang L, Liu C, Ren W, Li Z. Graphene surface-anchored fluorescence sensor for sensitive detection of microRNA coupled with enzyme-free signal amplification of hybridization chain reaction. ACS Appl Mater Interfaces 2012;4:6450–3.Google Scholar
[79]
Shen W, Li M, Wang B, et al. Hierarchical optical antenna: gold nanoparticle-modified photonic crystal for highly-sensitive label-free DNA detection. J Mater Chem 2012;22:8127.Google Scholar
[80]
Tan Y, Sutanto E, Alleyne AG, Cunningham BT. Photonic crystal enhancement of a homogeneous fluorescent assay using submicron fluid channels fabricated by E-jet patterning. J Biophotonics 2014;7:266–75.Google Scholar
[81]
Qi J, Zeng J, Zhao F, et al. Label-free, in situSERS monitoring of individual DNA hybridization in microfluidics. Nanoscale 2014;6:8521–6.Google Scholar
[82]
Ngo HT, Wang HN, Fales AM, Nicholson BP, Woods CW, Vo-Dinh T. DNA bioassay-on-chip using SERS detection for dengue diagnosis. Analyst 2014;139:5655–9.Google Scholar
[83]
Zhang X, Spuhler P, Freedman D, Ünlü M. Nanoscale spectroscopy with applications. Boca Raton, FL, USA, CRC Press, 2013:345–86.Google Scholar
[84]
Zhang X, Daaboul GG, Spuhler PS, et al. Nanoscale characterization of DNA conformation using dual-color fluorescence axial localization and label-free biosensing. Analyst 2014;139:6440.Google Scholar
[85]
Rant U, Arinaga K, Scherer S, et al. Switchable DNA interfaces for the highly sensitive detection of label-free DNA targets. Proc Natl Acad Sci 2007;104:17364–9.Google Scholar
[86]
Rant U. Sensing with electro-switchable biosurfaces. Bioanal Rev 2012;4:97–114.Google Scholar
[87]
Pei H, Zuo X, Pan D, Shi J, Huang Q, Fan C. Scaffolded biosensors with designed DNA nanostructures. NPG Asia Mater 2013;5:e51.Google Scholar
[88]
Long F, Zhu A, Shi H, Wang H, Liu J. Rapid on-site/in-situ detection of heavy metal ions in environmental water using a structure-switching DNA optical biosensor. Sci Rep 2013;3:2308.Google Scholar
[89]
Tan X, Wang Y, Armitage BA, Bruchez MP. Label-free molecular beacons for biomolecular detection. Anal Chem 2014;86:10864–9.Google Scholar
[90]
Ikbal J, Lim GS, Gao Z. The hybridization chain reaction in the development of ultrasensitive nucleic acid assays. TrAC Trends Anal Chem 2015;64:86–99.Google Scholar
[91]
Ali MM, Li F, Zhang Z, et al. Rolling circle amplification: a versatile tool for chemical biology, materials science and medicine. Chem Soc Rev 2014;43:3324–41.Google Scholar
[92]
Spiga FM, Bonyár A, Ring B, et al. Hybridization chain reaction performed on a metal surface as a means of signal amplification in SPR and electrochemical biosensors. Biosens Bioelectron 2014;54:102–8.Google Scholar
[93]
Ye S, Wu Y, Zhai X, Tang B. Asymmetric signal amplification for simultaneous SERS detection of multiple cancer markers with significantly different levels. Anal Chem 2015;87:8242–9.Google Scholar
[94]
Huang F, Xu P, Liang H. Using dual-polarization interferometry to study surface-initiated DNA hybridization chain reactions in real time. Biosens Bioelectron 2014;51:317–23.Google Scholar
[95]
Li J, Deng T, Chu X, et al. Rolling circle amplification combined with gold nanoparticle aggregates for highly sensitive identification of single-nucleotide polymorphisms. Anal Chem 2010;82:2811–6.Google Scholar
[96]
Guven B, Boyaci IH, Tamer U, Acar-Soykut E, Dogan U. Development of rolling circle amplification based surface-enhanced Raman spectroscopy method for 35S promoter gene detection. Talanta 2015;136:68–74.Google Scholar
[97]
Daaboul GG, Lopez CA, Yurt A, Goldberg BB, Connor JH, Ünluü MS. Label-free optical biosensors for virus detection and characterization. IEEE J Sel Top Quantum Electron 2012;18:1422–33.Google Scholar
[98]
Yurt A, Daaboul GG, Connor JH, Goldberg BB, Ünlü MS. Single nanoparticle detectors for biological applications. Nanoscale 2012;4:715–26.Google Scholar
[99]
van de Hulst HC. Light scattering by small particles. New York, Dover, 1957.Google Scholar
[100]
Enoki S, Iino R, Morone N, et al. Label-free single-particle imaging of the influenza virus by objective-type total internal reflection dark-field microscopy. PLoS One 2012;7:e49208.Google Scholar
[101]
Ortega Arroyo J, Andrecka J, Spillane KM, et al. Label-free, all-optical detection, imaging, and tracking of a single protein. Nano Lett 2014;14:2065–70.Google Scholar
[102]
Daaboul GG, Yurt A, Zhang X, Hwang GM, Goldberg BB, Ünluü MS. High-throughput detection and sizing of individual low-index nanoparticles and viruses for pathogen identification. Nano Lett 2010;10:4727–31.Google Scholar
[103]
Wang S, Shan X, Patel U, et al. Label-free imaging, detection, and mass measurement of single viruses by surface plasmon resonance. Proc Natl Acad Sci 2010;107: 16028–32.Google Scholar
[104]
Faez S, Lahini Y, Weidlich S, et al. Fast, label-free tracking of single viruses and weakly scattering nanoparticles in a nanofluidic optical fiber. ACS Nano 2015;9:12349–57.Google Scholar
[105]
Kukura P, Ewers H, Müller C, Renn A, Helenius A, Sandoghdar V. High-speed nanoscopic tracking of the position and orientation of a single virus. Nat Methods 2009;6:923–7.Google Scholar
[106]
Ozkumur E, Needham JW, Bergstein DA, et al. Label-free and dynamic detection of biomolecular interactions for high-throughput microarray applications. Proc Natl Acad Sci 2008;105:7988–92.Google Scholar
[107]
Scherr SM, Daaboul GG, Trueb J, et al. Real-time capture and visualization of individual viruses in complex media. ACS Nano 2016;10:2827–33.Google Scholar
[108]
Mitra A, Deutsch B, Ignatovich F, Dykes C, Novotny L. Nano-optofluidic detection of single viruses and nanoparticles. ACS Nano 2010;4:1305–12.Google Scholar
[109]
Yu H, Shan X, Wang S, Chen H, Tao N. Plasmonic imaging and detection of single DNA molecules. ACS Nano 2014;8:3427.Google Scholar
[110]
Devadas MS, Devkota T, Johns P, et al. Imaging nano-objects by linear and nonlinear optical absorption microscopies. Nanotechnology 2015;26:354001.Google Scholar
[111]
Zijlstra P, Paulo PMR, Orrit M. Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod. Nat Nanotechnol 2012;7:379–82.Google Scholar
[112]
Ament I, Prasad J, Henkel A, Schmachtel S, Sönnichsen C. Single unlabeled protein detection on individual plasmonic nanoparticles. Nano Lett 2012;12:1092–5.Google Scholar
[113]
Armani AM, Kulkarni RP, Fraser SE, Flagan RC, Vahala KJ. Label-free, single-molecule detection with optical microcavities. Science 2007;317:783–7.Google Scholar
[114]
Dantham VR, Holler S, Barbre C, Keng D, Kolchenko V, Arnold S. Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity. Nano Lett 2013;13:3347–51.Google Scholar
[115]
Baaske MD, Foreman MR, Vollmer F. Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform. Nat Nanotechnol 2014;9:933–9.Google Scholar