[1]

Barnes WL, Dereux A, Ebbesen TW. Surface plasmon subwavelength optics. Nature 2003;424:824–30.Google Scholar

[2]

Bergman DJ, Stockman MI. Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems. Phys Rev Lett 2003;90:027402.Google Scholar

[3]

Szunerits S, Boukherroub R. Sensing using localised surface plasmon resonance sensors. Chem Commun (Camb). 2012;48:8999–9010.Google Scholar

[4]

Huang X, Jain PK, El-Sayed IH, El-Sayed MA. Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Laser Med Sci 2008;23:217–28.Google Scholar

[5]

Hayashi S, Okamoto T. Plasmonics: visit the past to know the future. J Phys D: Appl Phys 2012;45:433001.Google Scholar

[6]

Liu Y, Zhang X. Metamaterials: a new frontier of science and technology. Chem Soc Rev. 2011;40:2494–507.Google Scholar

[7]

Bohren CF, Huffman DR. Absorption and scattering of light by small particles. (Wiley science paperback series), vol. 16. 1998:544.Google Scholar

[8]

Martin OJF. “Plasmon Resonances in Nanowires with a Nonregular Cross-Section,” in *Optical Nanotechnologies The Manipulation of Surface and Local Plasmons*, vol. 210, 2003, pp. 183–210.Google Scholar

[9]

Novotny L, van Hulst N. Antennas for light. Nat Photon 2011;5:83–90.Google Scholar

[10]

Bohren CF, Huffman DR. Absorption and scattering of light by small particles. Weinheim, Germany: Wiley-VCH Verlag GmbH, 1998.Google Scholar

[11]

Fuchs R. Theory of the optical properties of ionic crystal cubes. Phys Rev B 1975;11:1732–40.Google Scholar

[12]

Zhang S, Bao K, Halas NJ, Xu H, Nordlander P. Substrateinduced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed. Nano Lett 2011;11:1657–3.Google Scholar

[13]

Schmidt F-P, Ditlbacher H, Hohenester U, Hohenau A, Hofer F, Krenn JR. Dark plasmonic breathing modes in silver nanodisks. Nano Lett 2012;12:5780–3.Google Scholar

[14]

Luk’yanchuk B, Zheludev NI, Maier SA, Halas NJ, Nordlander P, Giessen H, Chong CT. The Fano resonance in plasmonic nanostructures and metamaterials. Nat Mater 2010;9:707–15.Google Scholar

[15]

Lovera A, Gallinet B, Nordlander P, Martin OJF. Mechanisms of Fano resonances in coupled plasmonic systems. ACS Nano 2013;7:4527–36.Google Scholar

[16]

Verellen N, Van Dorpe P, Huang C, Lodewijks K, Vandenbosch GAE, Lagae L, Moshchalkov VV. Plasmon line shaping using nanocrosses for high sensitivity localized surface plasmon resonance sensing. Nano Lett 2011;11:391–7.Google Scholar

[17]

Nylander C, Liedberg B, Lind T. Gas detection by means of surface plasmon resonance. Sensor Actuator 1982;3:79–88.Google Scholar

[18]

Baudrion A-L, de Léon-Pérez F, Mahboub O, Hohenau A, Ditlbacher H, García-Vidal FJ, Dintinger J, Ebbesen TW, Martin-Moreno L, Krenn JR. Coupling efficiency of light to surface plasmon polariton for single subwavelength holes in a gold film. Opt Express 2008;16:3420–9.Google Scholar

[19]

Lopez-Tejeira F, Rodrigo SG, Martin-Moreno L, Garcia-Vidal FJ, Devaux E, Dintinger J, Ebbesen TW, Krenn JR, Radko IP, Bozhevolnyi SI, Gonzalez MU, Weeber JC, Dereux A. Modulation of surface plasmon coupling-in by one-dimensional surface corrugation. 2007;033035:20.Google Scholar

[20]

Ropers C, Neacsu CC, Elsaesser T, Albrechty M, Raschke MB, Lienau C. Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source. Nano Lett 2007;7:2784–8.Google Scholar

[21]

Lamy J-M, Justice J, Lévêque G, Corbett B. Monolithic excitation and manipulation of surface plasmon polaritons on a vertical cavity surface emitting laser Appl Phys A 2011;103:665–7.Google Scholar

[22]

Lalanne P, Hugonin JP. Interaction between optical nano-objects at metallo-dielectric interfaces. 2006;Nat Phys 2:551–6.Google Scholar

[23]

Berini P. Long-range surface plasmon polaritons. Adv Opt Photonics 2009;1:484.Google Scholar

[24]

Krupin O, Asiri H, Wang C, Tait RN, Berini P. Biosensing using straight long-range surface plasmon waveguides. Opt Express 2013;21:698–709.Google Scholar

[25]

Farhang A, Martin OJF. Plasmon delocalization onset in finite sized nanostructures. Opt Express 2011;19:11387–96.Google Scholar

[26]

Holland WR, Hall DG. Surface-plasmon dispersion relation: Shifts induced by the interaction with localized plasma resonances. Phys Rev B 1983;27:7765–8.Google Scholar

[27]

Kume T, Hayashi S, Yamamoto K. Light emission from surface plasmon polaritons mediated by metallic fine particles. Phys Rev B 1997;55:4774–82.Google Scholar

[28]

Holland WR, Hall DG. Frequency shifts of an electric-dipole resonance near a conducting surface. Phys Rev Lett 1984;52:1041–4.Google Scholar

[29]

Stuart H, Hall D. Enhanced dipole-dipole interaction between elementary radiators near a surface. Phys Rev Lett 1998;80:5663–6.Google Scholar

[30]

Félidj N, Aubard J, Lévi G, Krenn JR, Schider G, Leitner A, Aussenegg FR. Enhanced substrate-induced coupling in two-dimensional gold nanoparticle arrays. Phys Rev B 2002;66:245407.Google Scholar

[31]

Hohenau A, Krenn JR. Plasmonic modes of gold nano-particle arrays on thin gold films. Phys Status Solidi – Rapid Res Lett 2010;4:256–8.Google Scholar

[32]

Linden S, Kuhl J, Giessen H. Controlling the interaction between light and gold nanoparticles: selective suppression of extinction. Phys Rev Lett 2001;86:4688–91.Google Scholar

[33]

Cesario J, Quidant R, Badenes G, Enoch S. Electromagnetic coupling between a metal nanoparticle grating and a metallic surface. Opt Lett 2005;30:3404–6.Google Scholar

[34]

Farhang A, Siegfried T, Ekinci Y, Sigg H, Martin OJF. Large-scale sub-100 nm compound plasmonic grating arrays to control the interaction between localized and propagating plasmons. J Nanophotonics 2014;8:083897.Google Scholar

[35]

Lassiter JB, McGuire F, Mock JJ, Ciracì C, Hill RT, Wiley BJ, Chilkoti A, Smith DR. Plasmonic waveguide modes of filmcoupled metallic nanocubes. Nano Lett 2013;13:5866–72.Google Scholar

[36]

Yamamoto N, Ohtani S, Garcia De Abajo FJ. Gap and mie plasmons in individual silver nanospheres near a silver surface. Nano Lett 2011;11:91–5.Google Scholar

[37]

Lei DY, Fernández-Domínguez AI, Sonnefraud Y, Appavoo K, Haglund RF, Pendry JB, Maier SA. Revealing plasmonic gap modes in particle-on-film systems using dark-field spectroscopy. ACS Nano 2012;6:1380–6.Google Scholar

[38]

Mock JJ, Hill RT, Degiron A, Zauscher S, Chilkoti A, Smith DR. Distance-dependent plasmon resonant coupling between a gold nanoparticle and gold film. Nano Lett 2008;8:2245–52.Google Scholar

[39]

Hill RT, Mock JJ, Hucknall A, Wolter SD, Jokerst NM, Smith DR, Chilkoti A. Plasmon ruler with angstrom length resolution. ACS Nano 2012;6:9237–46.Google Scholar

[40]

Mock JJ, Hill RT, Tsai Y-J, Chilkoti A, Smith DR. Probing dynamically tunable localized surface plasmon resonances of filmcoupled nanoparticles by evanescent wave excitation. Nano Lett 2012;12:1757–64.Google Scholar

[41]

Lévêque G, Martin OJF. Optical interactions in a plasmonic particle coupled to a metallic film. Opt Express 2006;14:9971–81.Google Scholar

[42]

Mortensen NA, Raza S, Wubs M, Søndergaard T, Bozhevolnyi SI. A generalized non-local optical response theory for plasmonic nanostructures. Nat Commun 2014;5:3809.Google Scholar

[43]

Ciracì C, Hill RT, Mock JJ, Urzhumov Y, Fernández-Domínguez AI, Maier SA, Pendry JB, Chilkoti A, Smith DR. Probing the ultimate limits of plasmonic enhancement. Science 2012;337:1072–4.Google Scholar

[44]

Hao J, Wang J, Liu X, Padilla WJ, Zhou L, Qiu M. High performance optical absorber based on a plasmonic metamaterial. Appl Phys Lett 2010;96:251104–251104–3.Google Scholar

[45]

Wu C, Neuner B, Shvets G, John J, Milder A, Zollars B, Savoy S. Large-area wide-angle spectrally selective plasmonic absorber. Phys Rev B 2011; 84:075102.Google Scholar

[46]

Moreau A, Ciracì C, Mock JJ, Hill RT, Wang Q, Wiley BJ, Chilkoti A, Smith DR, Ciraci C. Controlled-reflectance surfaces with film-coupled colloidal nanoantennas. Nature 2012;492:86–9.Google Scholar

[47]

Shalaev VM. Optical negative-index metamaterials. Nat Photonics 2007;1:41–8.Google Scholar

[48]

Nielsen MG, Pors A, Albrektsen O, Bozhevolnyi SI. Efficient absorption of visible radiation by gap plasmon resonators. Opt Express 2012;20:13311.Google Scholar

[49]

Hedayati MK, Javaherirahim M, Mozooni B, Abdelaziz R, Tavassolizadeh A, Chakravadhanula VSK, Zaporojtchenko V, Strunkus T, Faupel F, Elbahri M. Design of a perfect black absorber at visible frequencies using plasmonic metamaterials. Adv Mater 2011;23:5410–4.Google Scholar

[50]

Yan M, Dai J, Qiu M. Lithography-free broadband visible light absorber based on a mono-layer of gold nanoparticles. J Opt 2014;16:25002.Google Scholar

[51]

Liu G-Q, Liu Z-Q, Huang K, Chen Y-H, Cai Z-J, Zhang X-N, Hu Y. Narrowband light total antireflection and absorption in metal film–array structures by plasmonic near-field coupling. Plasmonics 2014;9:17–25.Google Scholar

[52]

Tan H, Santbergen R, Smets AHM, Zeman M. Plasmonic light trapping in thin-film silicon solar cells with improved selfassembled silver nanoparticles. Nano Lett. 2012;12:4070–6.Google Scholar

[53]

Elbahri M, Hedayati MK, Kiran Chakravadhanula VS, Jamali M, Strunkus T, Zaporojtchenko V, Faupel F. An omnidirectional transparent conducting-metal-based plasmonic nanocomposite. Adv Mater 2011;23:1993–7.Google Scholar

[54]

Liu Z, Liu G, Zhou H, Liu X, Huang K, Chen Y, Fu G. Near-unity transparency of a continuous metal film via cooperative effects of double plasmonic arrays. Nanotechnology 2013;24:155203.Google Scholar

[55]

Liu GQ, Hu Y, Liu ZQ, Cai ZJ, Zhang XN, Chen YH, Huang K. Multispectral optical enhanced transmission of a continuous metal film coated with a plasmonic core-shell nanoparticle array. Opt Commun 2014;316:111–9.Google Scholar

[56]

Cui L, Song G, Lang P, Wu C, Liu H, Yu L, Xiao J. Optical interaction in a plasmonic metallic particle chain coupled to a metallic film. Optik (Stuttg) 2013;124:6936–8.Google Scholar

[57]

Orendorff CJ, Gole A, Sau TK, Murphy CJ. Surface-enhanced raman spectroscopy of self-assembled monolayers: sandwich architecture and nanoparticle shape dependence. Anal Chem 2005;77:3261–6.Google Scholar

[58]

Daniels JK, Chumanov G. Nanoparticle-mirror sandwich substrates for surface-enhanced Raman scattering. J Phys Chem B 2005;109:17936–42.Google Scholar

[59]

Mubeen S, Zhang S, Kim N, Lee S, Krämer S, Xu H, Moskovits M. Plasmonic properties of gold nanoparticles separated from a gold mirror by an ultrathin oxide. Nano Lett 2012;12:2088–94.Google Scholar

[60]

Wang X, Li M, Meng L, Lin K, Feng J, Huang T, Yang Z, Ren B. Probing the location of hot spots by surface-enhanced Raman spectroscopy: toward uniform substrates. ACS Nano 2014;8:528–36.Google Scholar

[61]

Maurer T, Nicolas R, Leveque G, Subramanian P, Proust J, Béal J, Schuermans S, Vilcot JP, Herro Z, Kazan M, Plain J, Boukherroub R, Akjouj A, Djafari-Rouhani B, Adam PM, Szunerits S. Enhancing LSPR sensitivity of Au gratings through graphene coupling to Au film. Plasmonics 2013;9:507–12.Google Scholar

[62]

Nicolas R, Maurer T, Lévêque G, Subramanian P, Proust J, Béal J, Schuermans S, Vilcot J-P, Herro Z, Kazan M, Plain J, Boukherroub R, Akjouj A, Djafari-Rouhani B, Adam P-M, Szunerits S. Enhanced gold film-coupled graphene-based plasmonic nanosensor. Proceeding SPIE, Plasmon Met Nanostructures Their Opt Prop XI 2013;8809:88090R.Google Scholar

[63]

Zalyubovskiy SJ, Bogdanova M, Deinega A, Lozovik Y, Pris AD, An KH, Hall WP, Potyrailo RA. Theoretical limit of localized surface plasmon resonance sensitivity to local refractive index change and its comparison to conventional surface plasmon resonance sensor. J Opt Soc Am A 2012;29:994–1002.Google Scholar

[64]

Lodewijks K, Van Roy W, Borghs G, Lagae L, Van Dorpe P. Boosting the figure-of-merit of LSPR-based refractive index sensing by phase-sensitive measurements. Nano Lett 2012;12:1655–9.Google Scholar