[1]

Baev A, Prasad PN, Ågren H, Samoć M, Wegener M. Metaphotonics: an emerging field with opportunities and challenges. Phys Rep 2015;594:1–60.Google Scholar

[2]

Focusing in on applications. Nat Nanotechnology (Editorial) 2015;10:1. http://www.nature.com/nnano/journal/v10/n1/full/nnano.2014.332.html.Google Scholar

[3]

Moskovits M. Surface-enhanced spectroscopy. Rev Mod Phys 1985;57:783–826.Google Scholar

[4]

Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, Dasari R, Feld MS. Single molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Lett 1997;78:1667–70.Google Scholar

[5]

Nie S, Emery SR. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 1997;275:1102–6.Google Scholar

[6]

Taton TA, Mirkin CA, Letsinger RL. Scanometric DNA array detection with nanoparticle probes. Science 2000;289:1757–60.Google Scholar

[7]

Schultz S, Smith DR, Mock JJ, Schultz DA. Single-target molecule detection with nonbleaching multicolor optical immunolabels. Proc Natl Acad Sci USA 2000;97:996–1001.Google Scholar

[8]

Li KR, Stockman MI, Bergman DJ. Self-similar chain of metal nanospheres as an efficient nanolens. Phys Rev Lett 2003;91:227402.Google Scholar

[9]

Gramotnev DR, Bozhevolnyi SI. Plasmonics beyond the diffraction limit. Nat Photon 2010;4:83–91.Google Scholar

[10]

Kalkbrenner T, Ramstein M, Mlynek J, Sandoghdar V. A single gold particle as a probe for apertureless scanning near-field optical microscopy. J Microsc 2001;202:72–6.Google Scholar

[11]

Zhang X, Liu Z. Superlenses to overcome the diffraction limit. Nat Mater 2008;7:435–41.Google Scholar

[12]

Ditlbacher H, Krenn JR, Schider G, Leitner A, Aussenegg FR. Two-dimensional optics with surface plasmon polaritons. Appl Phys Lett 2002;81:1762–4.Google Scholar

[13]

Gramotnev DK, Bozhevolnyi SI. Nanofocusing of electromagnetic radiation. Nat Photon 2014;8:14–23.Google Scholar

[14]

Kumar K, Duan H, Hegde RS, Koh SCW, Wei JN, Yang JKW. Printing colour at the optical diffraction limit. Nat Nanotechnol 2012;7:557–61.Google Scholar

[15]

Zhu X, Vannahme C, Højlund-Nielsen E, Mortensen NA, Kristensen A. Plasmonic colour laser printing. Nat Nanotechnol 2016;11:325–9.Google Scholar

[16]

Engheta N. Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials. Science 2007;317:1698–702.Google Scholar

[17]

Shalaev VM. Optical negative-index metamaterials. Nat Photon 2007;1:41–8.Google Scholar

[18]

Atwater HA, Polman A. Plasmonics for improved photovoltaic devices. Nat Mater 2010;9:205–13.Google Scholar

[19]

Catchpole KR, Polman A. Plasmonic solar cells. Opt Express 2008;16:21793–800.Google Scholar

[20]

Rockstuhl C, Lederer F. Photon management by metallic nanodiscs in thin film solar cells. Appl Phys Lett 2009;94:213102.Google Scholar

[21]

Zhukovsky SV, Babicheva VE, Evlyukhin AB, Protsenko IE, Lavrinenko AV, Uskov AV. Giant photogalvanic effect in noncentrosymmetric plasmonic nanoparticles. Phys Rev X 2014;4:031038.Google Scholar

[22]

Harutyunyan H, Martinson ABF, Rosenmann D, Khorashad LK, Besteiro LV, Govorov AO, Wiederrecht GP. Anomalous ultrafast dynamics of hot plasmonic electrons in nanostructures with hot spots. Nat Nanotechnol 2015;10:770–4.Google Scholar

[23]

Brongersma ML, Halas NJ, Nordlander P. Plasmon-induced hot carrier science and technology. Nat Nanotechnol 2015;10: 25–34.Google Scholar

[24]

García de Abajo FJ. Colloquium: Light scattering by particle and hole arrays. Rev Mod Phys 2007;79:1267–90.Google Scholar

[25]

Ebbesen TW, Lezec HJ, Ghaemi HF, Thio T, Wolff PA. Extraordinary optical transmission through sub-wavelength hole arrays. Nature 1998;391:667–9.Google Scholar

[26]

Braun J, Gompf B, Kobiela G, Dressel M. How holes can obscure the view: suppressed transmission through an ultrathin metal film by a subwavelength hole array. Phys Rev Lett 2009;103:203901.Google Scholar

[27]

Xiao S, Mortensen NA. Surface-plasmon-polariton-induced suppressed transmission through ultrathin metal disk arrays. Opt Lett 2011;36:37–9.Google Scholar

[28]

Pillai S, Green MA. Plasmonics for photovoltaic applications. Sol Energy Mater Sol Cells 2010;94:1481–6.Google Scholar

[29]

Rechberger W, Hohenau A, Leitner A, Krenn JR, Lamprecht B, Aussenegg FR. Optical properties of two interacting gold nanoparticles. Opt Commun 2003;220:137–41.Google Scholar

[30]

Auguié B, Barnes WL. Collective resonances in gold nanoparticle arrays. Phys Rev Lett 2008;101:143902.Google Scholar

[31]

Prodan E, Radloff C, Halas NJ, Nordlander P. A hybridization model for the plasmon response of complex nanostructures. Science 2003;302:419–22.Google Scholar

[32]

Raza S, Wubs M, Bozhevolnyi SI, Mortensen NA. Nonlocal study of ultimate plasmon hybridization. Opt Lett 2015;40:839–42.Google Scholar

[33]

Zhukovsky SV, Babicheva VE, Uskov AV, Protsenko IE, Lavrinenko AV. Enhanced electron photoemission by collective lattice resonances in plasmonic nanoparticle-array photodetectors and solar cells. Plasmonics 2014;9:283–9.Google Scholar

[34]

Knight MW, Sobhani H, Nordlander P, Halas NJ. Photodetection with active optical antennas. Science 2011;332:702–4.Google Scholar

[35]

Novitsky A, Uskov AV, Gritti C, Protsenko IE, Kardynal BE, Lavrinenko AV. Photon absorption and photocurrent in solar cells below semiconductor bandgap due to electron photoemission from plasmonic nanoantennas. Prog Photovoltaics 2014;22:422–6.Google Scholar

[36]

Moulin EA, Paetzold UW, Pieters BE, Reetz W, Carius R. Plasmon induced photoexcitation of “hot” electrons and “hot” holes in amorphous silicon photosensitive devices containing silver nanoparticles. J Appl Phys 2013;113:144501.Google Scholar

[37]

Goykhman I, Desiatov B, Khurgin J, Shappir J, Levy U. Locally oxidized silicon surface-plasmon Schottky detector for telecom regime. Nano Lett 2011;11:2219–24.Google Scholar

[38]

Westphalen M, Kreibig U, Rostalski J, Lüth H, Meissner D. Metal cluster enhanced organic solar cells. Sol Energy Mater Sol Cells 2000;61:97–105.Google Scholar

[39]

Wen C, Ishikawa K, Kishima M, Yamada K. Effects of silver particles on the photovoltaic properties of dye-sensitized TiO_{2} thin films. Sol Energy Mater Sol Cells 2000;61:339–51.Google Scholar

[40]

Furube A, Du L, Hara K, Katoh R, Tachiya M. Ultrafast plasmon-induced electron transfer from gold nanodots into TiO_{2} nanoparticles. J Am Chem Soc 2007;129:14852–3.Google Scholar

[41]

Nishijima Y, Ueno K, Yokota Y, Murakoshi K, Misawa H. Plasmon-assisted photocurrent generation from visible to near-infrared wavelength using a aunanorods/TiO_{2} electrode. J Phys Chem Lett 2010;1:2031–6.Google Scholar

[42]

Kirkengen M, Bergli J, Galperin YM. Direct generation of charge carriers in c-Si solar cells due to embedded nanoparticles. J Appl Phys 2007;102:093713.Google Scholar

[43]

Moulin E, Luo P, Pieters B, Sukmanowski J, Kirchhoff J, Reetz W, Mueller T, Carius R, Royer F-X, Stiebig H. Photoresponse enhancement in the near infrared wavelength range of ultrathin amorphous silicon photosensitive devices by integration of silver nanoparticles. Appl Phys Lett 2009;95:033505.Google Scholar

[44]

Luo PQ, Moulin E, Sukmanowski J, Royer FX, Dou XM, Stiebig H. Enhanced infrared response of ultra thin amorphous silicon photosensitive devices with Ag nanoparticles. Thin Solid Films 2009;517:6256–9.Google Scholar

[45]

Fukuda M, Aihara T, Yamaguchi K, Ling YY, Miyaji K, Tohyama M. Light detection enhanced by surface plasmon resonance in metal film. Appl Phys Lett 2010;96:153107.Google Scholar

[46]

Desiatov B, Goykhman I, Mazurski N, Shappir J, Khurgin JB, Levy U. Plasmonic enhanced silicon pyramids for internal photoemission Schottky detectors in the near-infrared regime. Optica 2015;2:335–8.Google Scholar

[47]

Okinaka Y, Hoshino M. Some recent topics in gold plating for electronics applications. Gold Bull 1998;31:3–13.Google Scholar

[48]

Mallory GO, Hajdu JB, editors. Electroless plating: fundamentals & applications. Technology & engineering. Cambridge, Cambridge University Press, 1990.Google Scholar

[49]

Ling GP, He JH, Huang L. Size control of silver nanoparticles deposited on silica dielectric spheres by electroless plating technique. J Mater Sci 2004;39:2955–7.Google Scholar

[50]

Porter LA, Choi HC, Ribbe AE, Buriak JM. Controlled electroless deposition of noble metal nanoparticle films on germanium surfaces. Nano Lett 2002;2:1067–71.Google Scholar

[51]

Durhuus D, Larsen MV, Andryieuski A, Malureanu R, Pizzoccherob F, Bøggild P, Lavrinenko AV. Selective electroless silver deposition on graphene edges. J Electrochem Soc 2015;162:D213–7.Google Scholar

[52]

Malureanu R, Zalkovskij M, Andryieuski A, Lavrinenko AV. Controlled Ag electroless deposition in bulk structures with complex three-dimensional profiles. J Electrochem Soc 2010;157:K284–8.Google Scholar

[53]

Yu ET. Nanoplasmonics for photovoltaic applications. In: Tsakalakos L, ed. Nanotechnology for photovoltaics. Chapter 10. New York, CRC Press, 2010, 391–421.Google Scholar

[54]

Kampen T, Schuller A, Zahn DRT, Biel B, Ortega J, Perez R, Flores F. Schottky contacts on passivated GaAs(100) surfaces: barrier height and reactivity. Appl Surf Sci 2004;234:341–8.Google Scholar

[55]

Johnson PB, Christy RW. Optical constants of the noble metals. Phys Rev B 1972;6:4370–9.Google Scholar

[56]

Skauli T, Kuo PS, Vodopyanov KL, Pinguet TJ, Levi O, Eyres LA, Harris JS, Fejer MM, Gerard B, Becouarn K, Lallier E. Improved dispersion relations for GaAs and applications to nonlinear optics. J Appl Phys 2003;94:6447–55.Google Scholar

[57]

Naik GV, Kim J, Boltasseva A. Oxides and nitrides as alternative plasmonic materials in the optical range. Opt Mater Express 2011;1:1090–9.Google Scholar

[58]

Nelayah J, Kociak M, Stephan O, García de Abajo FJ, Tence M, Henrard L, Taverna D, Pastoriza-Santos I, Liz-Marzan LM, Colliex C. Mapping surface plasmons on a single metallic nanoparticle. Nat Phys 2007;3:348–53.Google Scholar

[59]

Chu M-W, Myroshnychenko V, Chen CH, Deng J-P, Mou C-Y, García de Abajo FJ. Probing bright and dark surface-plasmon modes in individual and coupled noble metal nanoparticles using an electron beam. Nano Lett 2009;9:399–404.Google Scholar

[60]

García de Abajo FJ. Optical excitations in electron microscopy. Rev Mod Phys 2010;82:209–75.Google Scholar

[61]

Colliex C, Kociak M, Stéphan O. Electron energy loss spectroscopy imaging of surface plasmons at the nanometer scale. Ultramicroscopy 2016;162:A1–24.Google Scholar

[62]

Raza S, Stenger N, Pors A, Holmgaard T, Kadkhodazadeh S, Wagner JB, Pedersen K, Wubs M, Bozhevolnyi SI, Mortensen NA. Extremely confined gap surface-plasmon modes excited by electrons. Nat Commun 2014;5:4125.Google Scholar

[63]

Scholl JA, Garcia-Etxarri A, Aguirregabiria G, Esteban R, Narayan TC, Koh AL, Aizpurua J, Dionne JA. Evolution of plasmonic metamolecule modes in the quantum tunneling regime. ACS Nano 2016;10:1346–54.Google Scholar

[64]

Koh AL, Bao K, Khan I, Smith WE, Kothleitner G, Nordlander P, Maier SA, McComb DW. Electron energy-loss spectroscopy (EELS) of surface plasmons in single silver nanoparticles and dimers: influence of beam damage and mapping of dark modes. ACS Nano 2009;3:3015–22.Google Scholar

[65]

Raza S, Kadkhodazadeh S, Christensen T, Di Vece M, Wubs M, Mortensen NA, Stenger N. Multipole plasmons and their disappearance in few-nanometer silver nanoparticles. Nat Commun 2015;6:8788.Google Scholar

[66]

Christensen T, Yan W, Raza S, Jauho A-P, Mortensen NA, Wubs M. Nonlocal response of metallic nanospheres probed by light, electrons, and atoms. ACS Nano 2014;8:1745–58.Google Scholar

[67]

Nicoletti O, Wubs M, Mortensen NA, Sigle W, van Aken PA, Midgley PA. Surface plasmon modes of a single silver nanorod: an electron energy loss study. Opt Express 2011;19:15371–9.Google Scholar

[68]

Mortensen NA, Raza S, Wubs M, Søndergaard T, Bozhevolnyi SI. A generalized non-local optical response theory for plasmonic nanostructures. Nat Commun 2014;5:3809.Google Scholar

[69]

Uskov AV, Protsenko IE, Mortensen NA, O’Reilly EP. Broadening of plasmonic resonance due to electron collisions with nanoparticle boundary: a quantum mechanical consideration. Plasmonics 2014;9:185–92.Google Scholar

[70]

Khurgin JB. How to deal with the loss in plasmonics and metamaterials. Nat Nanotechnol 2015;10:2–6.Google Scholar