[1]

Smith DR, Kroll N. Negative refractive index in left-handed materials. Phys Rev Lett 2000;85:2933–6.Google Scholar

[2]

Shelby RA, Smith DR, Schultz S. Experimental verification of a negative index of refraction. Science 2001;292:77–9.Google Scholar

[3]

Engheta N, Ziolkowski RW. Metamaterials: physics and engineering explorations. Piscataway, NJ: John Wiley & Sons, IEEE Press, 2006.Google Scholar

[4]

Capolino F. Metamaterials handbook. Boca Raton, FL: CRC Press, 2009.Google Scholar

[5]

Soukoulis CM, Wegener M. Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nat Photonics 2011;5:523–30.Google Scholar

[6]

Holloway CL, Kuester EF, Gordon JA, O’Hara J, Booth J, Smith DR. An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials. IEEE Antennas Propag M 2012;54:10–35.Google Scholar

[7]

Valev VK, Baumberg JJ, Sibilia C, Verbiest T. Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook. Adv Mater 2013;25:2517–34.Google Scholar

[8]

Yu N, Capasso F. Flat optics with designer metasurfaces. Nat Mater 2014;13:139–50.Google Scholar

[9]

Minovich AE, Miroshnichenko AE, Bykov AY, Murzina TV, Neshev DN, Kivshar YS, Functional and nonlinear optical metasurfaces. Laser Photonics Rev 2015;9:195–213.Google Scholar

[10]

Tretyakov SA. Metasurfaces for general transformations of electromagnetic fields. Phil Trans R Soc A 2015;373:20140362.Google Scholar

[11]

Glybovski SB, Tretyakov SA, Belov PA, Kivshar YS, Simovski CR. Metasurfaces: from microwaves to visible. Phys Rep 2016;634:1–72.Google Scholar

[12]

Chen H-T, Taylor AJ, Yu N. A review of metasurfaces: physics and applications. Rep Prog Phys 2016;79:076401.Google Scholar

[13]

Epstein A, Eleftheriades GV. Huygens’ metasurfaces via the equivalence principle: design and applications. JOSA B 2016;33:A31–50.Google Scholar

[14]

Monticone F, Alù A. Metamaterial, plasmonic and nanophotonic devices. Rep Prog Phys 2017;80:036401.Google Scholar

[15]

Agranovich VM, Ginzburg VL. Spatial dispersion in crystal optics and the theory of excitons. New York: Interscience, 1966.Google Scholar

[16]

Fedorov FE. Theory of gyrotropy. Minsk: Nauka i Technika, 1976.Google Scholar

[17]

Post EJ. Formal structure of electromagnetics. Amsterdam: North-Holland Publishing Company, 1962.Google Scholar

[18]

Mandelshtam LI. Group velocity in a crystal lattice. J Exp Theor Phys 1945;15:18.Google Scholar

[19]

Mandelshtam LI. Lectures on some problems of the theory of oscillations (1944). In: Leontovich MA, ed. Complete collection of works, vol. 5. Moscow: Academy of Sciences, 1950: 428–67.Google Scholar

[20]

Sivukhin DV. The energy of electromagnetic waves in dispersive media. Opt Spektrosk 1957;3:308–12.Google Scholar

[21]

Dolin LS. To the possibility of comparison of three-dimensional electromagnetic systems with nonuniform anisotropic filling. Izv Vyssh Uchebn Zaved Radiofiz 1961;4:964–7.Google Scholar

[22]

Pendry JB, Schurig D, Smith DR. Controlling electromagnetic fields. Science 2006;312:1780–2.Google Scholar

[23]

Leonhardt U. Optical conformal mapping. Science 2006;312:1777–80.Google Scholar

[24]

Schurig D, Mock JJ, Justice BJ, et al. Metamaterial electromagnetic cloak at microwave frequencies. Science 2006;314:977–80.Google Scholar

[25]

Veselago VG. The electrodynamics of substances with simultaneously negative values of *ϵ* and *μ*. Phys Usp 1968;10:509.Google Scholar

[26]

Pendry JB. Negative refraction makes a perfect lens. Phys Rev Lett 2000;85:3966–9.Google Scholar

[27]

It should be noted that in some references the term is written with a dash, that is “bi-anisotropy”.Google Scholar

[28]

Marqués R, Medina F, Rafii-El-Idrissi R. Role of bianisotropy in negative permeability and left-handed metamaterials. Phys Rev B 2002;65:144440.Google Scholar

[29]

Smith DR, Gollub J, Mock JJ, Padilla WJ, Schurig D. Calculation and measurement of bianisotropy in a split ring resonator metamaterial. J Appl Phys 2006;100:024507.Google Scholar

[30]

Kong JA. Theorems of bianisotropic media. Proc IEEE 1972;60:1036–46.Google Scholar

[31]

Serdyukov A, Semchenko I, Tretyakov S, Sihvola A. Electromagnetics of bi-anisotropic materials – theory and application, vol. 11. Amsterdam: Gordon and Breach Science Publishers, 2001.Google Scholar

[32]

Lindell I, Sihvola A, Tretyakov S, Viitanen A. Electromagnetic waves in chiral and bi-isotropic media. Boston: Artech House, 1994.Google Scholar

[33]

Tretyakov SA, Sochava AA. Eigenwaves in uniaxial chiral omega media. Microw Opt Technol Lett 1993;6:701–5.Google Scholar

[34]

Tretyakov SA, Sochava AA. Proposed composite material for nonreflecting shields and antenna radomes. Electron Lett 1993;29:1048–9.Google Scholar

[35]

Zhou J, Koschny T, Kafesaki M, Economou EN, Pendry JB, Soukoulis CM. Saturation of the magnetic response of split-ring resonators at optical frequencies. Phys Rev Lett 2005;95:223902.Google Scholar

[36]

Tretyakov S. On geometrical scaling of split-ring and double-bar resonators at optical frequencies. Metamaterials 2007;1:40–3.Google Scholar

[37]

Kodera T, Sounas DL, Caloz C. Artificial Faraday rotation using a ring metamaterial structure without static magnetic field. Appl Phys Lett 2011;99:031114.Google Scholar

[38]

Mahmoud AM, Davoyan AR, Engheta N. All-passive nonreciprocal metastructure. Nat Commun 2015;6:8359.Google Scholar

[39]

Tellegen BD. The gyrator, a new electric network element. Philips Res Rep 1948;3:81–101.Google Scholar

[40]

Tretyakov SA. Nonreciprocal composite with the material relations of the transparent absorbing boundary. Microw Opt Technol Lett 1998;19:365–8.Google Scholar

[41]

Onsager L. Reciprocal relations in irreversible processes. I. Phys Rev 1931;37:405–26.Google Scholar

[42]

Onsager L. Reciprocal relations in irreversible processes. II. Phys Rev 1931;38:2265–79.Google Scholar

[43]

Casimir HBG. On Onsager’s principle of microscopic reversibility. Rev Mod Phys 1945;17:343–50.Google Scholar

[44]

Landau LD, Lifshitz EM. Statistical physics, part 1 (course of theoretical physics). Oxford: Elsevier, 2013.Google Scholar

[45]

Tretyakov S, Sihvola A, Jancewicz B. Onsager-Casimir principle and the constitutive relations of bi-anisotropic media. J Electromagnet Wave 2002;16:573–87.Google Scholar

[46]

Jaggard DL, Mickelson AR, Papas CH. On electromagnetic waves in chiral media. Appl Phys 1979;18:211–6.Google Scholar

[47]

Tretyakov SA, Mariotte F, Simovski CR, Kharina TG, Heliot JP. Analytical antenna model for chiral scatterers: comparison with numerical and experimental data. IEEE Trans Antennas Propag 1996;44:1006–14.Google Scholar

[48]

Semchenko IV, Khakhomov SA, Samofalov AL. Transformation of the polarization of electromagnetic waves by helical radiators. J Commun Technol El+ 2007;52:850–5.Google Scholar

[49]

Semchenko IV, Khakhomov SA, Samofalov AL. Optimal helix shape: equality of dielectric, magnetic, and chiral susceptibilities. Russ Phys J 2009;52:472.Google Scholar

[50]

Decker M, Zhao R, Soukoulis CM, Linden S, Wegener M. Twisted split-ring-resonator photonic metamaterial with huge optical activity. Opt Lett 2010;35:1593–5.Google Scholar

[51]

Pfeiffer C, Zhang C, Ray V, Guo LJ, Grbic A. High performance bianisotropic metasurfaces: asymmetric transmission of light. Phys Rev Lett 2014;113:023902.Google Scholar

[52]

Pfeiffer C, Zhang C, Ray V, Guo LJ, Grbic A. Polarization rotation with ultra-thin bianisotropic metasurfaces. Optica 2016;3:427–32.Google Scholar

[53]

Semchenko I. Gyrotropic properties of superlattices with magnetic structure in long-wave approximation. In: 3rd Int. Workshop on Chiral, Bi-isotropic and Bi-anisotropic Media “Chiral-94”. (Périgeux, France), 1994:175–8.Google Scholar

[54]

Ranjbar A, Grbic A. All-dielectric bianisotropic metasurfaces. In: 2017 IEEE International Symposium on Antennas and Propagation USNC/URSI National Radio Science Meeting, 2017:1719–20.Google Scholar

[55]

Gansel JK, Thiel M, Rill MS, et al. Gold helix photonic metamaterial as broadband circular polarizer. Science 2009;325:1513–5.Google Scholar

[56]

Kaschke J, Blume L, Wu L, et al. A helical metamaterial for broadband circular polarization conversion. Adv Opt Mater 2015;3:1411–7.Google Scholar

[57]

Faniayeu I. Design and fabrication of functional helix-based metasurfaces. PhD thesis, Shizuoka University, Section 3.2.2, 2017.Google Scholar

[58]

Faniayeu I, Khakhomov S, Semchenko I, Mizeikis V. Highly transparent twist polarizer metasurface. Appl Phys Lett 2017;111:111108.Google Scholar

[59]

Banzer P, Woźniak P, Mick U, Leon ID, Boyd RW. Chiral optical response of planar and symmetric nanotrimers enabled by heteromaterial selection. Nat Commun 2016;7:13117.Google Scholar

[60]

Ullah K, Garcia-Camara B, Habib M, et al. Chiral all-dielectric trimer nanoantenna. J Quant Spectrosc Radiat Transf 2018;208:71–7.Google Scholar

[61]

Saadoun MMI, Engheta N. A reciprocal phase shifter using novel pseudochiral or Ω medium. Microw Opt Technol Lett 1992;5:184–8.Google Scholar

[62]

Simovski CR, Tretyakov SA, Sochava AA, Sauviac B, Mariotte F, Kharina TG. Antenna model for conductive omega particles. J Electromagnet Wave 1997;11:1509–30.Google Scholar

[63]

Asadchy VS, Ra’di Y, Vehmas J, Tretyakov SA. Functional metamirrors using bianisotropic elements. Phys Rev Lett 2015;114:095503.Google Scholar

[64]

Alaee R, Albooyeh M, Yazdi M, et al. Magnetoelectric coupling in nonidentical plasmonic nanoparticles: theory and applications. Phys Rev B 2015;91:115119.Google Scholar

[65]

Faniayeu I, Mizeikis V. Vertical split-ring resonator perfect absorber metamaterial for ir frequencies realized via femtosecond direct laser writing. Appl Phys Exp 2017;10:062001.Google Scholar

[66]

Alaee R, Albooyeh M, Rahimzadegan A, Mirmoosa MS, Kivshar YS, Rockstuhl C. All-dielectric reciprocal bianisotropic nanoparticles. Phys Rev B 2015;92:245130.Google Scholar

[67]

Asadchy V, Albooyeh M, Tretyakov S. Optical metamirror: all-dielectric frequency-selective mirror with fully controllable reflection phase. JOSA B 2016;33:A16–20.Google Scholar

[68]

Sochava AA, Simovski CR, Tretyakov SA. Chiral effects and eigenwaves in bi-anisotropic omega structures. In: Priou A, Sihvola A, Tretyakov S, Vinogradov A, editors. Advances in complex electromagnetic materials, no. 28 in NATO ASI Series, Springer Netherlands, 1997:85–102.Google Scholar

[69]

Tretyakov SA. Electromagnetic metamaterials: past, present, and future. Oxford, United Kingdom, 2015.Google Scholar

[70]

Tretyakov SA. A personal view on the origins and developments of the metamaterial concept. J Opt 2017;19:013002.Google Scholar

[71]

Asadchy V. Spatially dispersive metasurfaces. PhD thesis, Aalto University, 2017.Google Scholar

[72]

In the case of lossy meta-atom, the second term in (3) is decomposed to nine dyads **a**_{i}**a**_{i} and vector **b** in the third term decomposes to two real-valued vectors.Google Scholar

[73]

Bunn CW. Chemical crystallography: an introduction to optical and X-ray methods. Oxford, United Kingdom: Clerendon Press, 1961.Google Scholar

[74]

Williams R. Optical-rotatory power and linear electro-optic effect in nematic liquid crystals of *p*-azoxyanisole. J Chem Phys 1969;50:1324–32.Google Scholar

[75]

Papakostas A, Potts A, Bagnall DM, Prosvirnin SL, Coles HJ, Zheludev NI. Optical manifestations of planar chirality. Phys Rev Lett 2003;90:107404.Google Scholar

[76]

Fedotov VA, Mladyonov PL, Prosvirnin SL, Rogacheva AV, Chen Y, Zheludev NI. Asymmetric propagation of electromagnetic waves through a planar chiral structure. Phys Rev Lett 2006;97:167401.Google Scholar

[77]

Plum E, Fedotov VA, Zheludev NI. Extrinsic electromagnetic chirality in metamaterials. J Opt A-Pure Appl Opt 2009;11:074009.Google Scholar

[78]

Plum E, Liu X-X, Fedotov VA, Chen Y, Tsai DP, Zheludev NI. Metamaterials: optical activity without chirality. Phys Rev Lett 2009;102:113902.Google Scholar

[79]

Marques R, Mesa F, Martel J, Medina F. Comparative analysis of edge- and broadside- coupled split ring resonators for metamaterial design – theory and experiments. IEEE Trans Antennas Propag 2003;51:2572–81.Google Scholar

[80]

Mühlig S, Menzel C, Rockstuhl C, Lederer F. Multipole analysis of meta-atoms. Metamaterials 2011;5:64–73.Google Scholar

[81]

Asadchy VS, Faniayeu IA, Ra’di Y, Tretyakov SA. Determining polarizability tensors for an arbitrary small electromagnetic scatterer. Phot Nano Fund Appl 2014;12:298–304.Google Scholar

[82]

Liu XX, Zhao Y, Alù A. Polarizability tensor retrieval for subwavelength particles of arbitrary shape. IEEE Trans Antennas Propag 2016;64:2301–10.Google Scholar

[83]

Alaee R, Rockstuhl C, Fernandez-Corbaton I. An electromagnetic multipole expansion beyond the long-wavelength approximation. Opt Commun 2018;407(Suppl. C):17–21.Google Scholar

[84]

Kodera T, Sounas DL, Caloz C. Nonreciprocal magnetless CRLH leaky-wave antenna based on a ring metamaterial structure. IEEE Antennas Wirel Prop Lett 2011;10:1551–4.Google Scholar

[85]

Vehmas J, Hrabar S, Tretyakov S. Transmission lines emulating moving media. New J Phys 2014;16:093065.Google Scholar

[86]

Ra’di Y, Grbic A. Magnet-free nonreciprocal bianisotropic metasurfaces. Phys Rev B 2016;94:195432.Google Scholar

[87]

Sounas DL, Alù A. Non-reciprocal photonics based on time modulation. Nat Photonics 2017;11:774–83.Google Scholar

[88]

Kamenetskii EO. On the technology of making chiral and bianisotropic waveguides for microwave propagation. Microw Opt Technol Lett 1996;11:103–7.Google Scholar

[89]

Tretyakov SA, Sihvola AH, Sochava AA, Simovski CR. Magnetoelectric interactions in bi-anisotropic media. J Electromagnet Wave 1998;12:481–97.Google Scholar

[90]

Tretyakov SA, Maslovski SI, Nefedov IS, Viitanen AJ, Belov PA, Sanmartin A. Artificial Tellegen particle. Electromagnetics 2003;23:665–80.Google Scholar

[91]

Mirmoosa M, Ra’di Y, Asadchy V, Simovski C, Tretyakov S. Polarizabilities of nonreciprocal bianisotropic particles. Phys Rev Appl 2014;1:034005.Google Scholar

[92]

Semchenko IV, Khakhomov SA, Samofalov AL. Radiation of circularly polarized electromagnetic waves by the artificial flat lattice with two-turn helical elements. In: Proc. of the 10th International Conference on Complex Media and Metamaterials, Ghent, Belgium, 2004:236–9.Google Scholar

[93]

Ra’di Y, Tretyakov SA. Balanced and optimal bianisotropic particles: maximizing power extracted from electromagnetic fields. New J Phys 2013;15:053008.Google Scholar

[94]

Fernandez-Corbaton I, Fruhnert M, Rockstuhl C. Objects of maximum electromagnetic chirality. Phys Rev X 2016;6:031013.Google Scholar

[95]

Saenz E, Semchenko I, Khakhomov S, et al. Modeling of spirals with equal dielectric, magnetic, and chiral susceptibilities. Electromagnetics 2008;28:476–93.Google Scholar

[96]

Niemi T, Karilainen AO, Tretyakov SA. Synthesis of polarization transformers. IEEE Trans Antennas Propag 2013;61:3102–11.Google Scholar

[97]

Guven K, Saenz E, Gonzalo R, Ozbay E, Tretyakov S. Electromagnetic cloaking with canonical spiral inclusions. New J Phys 2008;10:115037.Google Scholar

[98]

Karilainen AO, Tretyakov SA. Isotropic chiral objects with zero backscattering. IEEE Trans Antennas Propag 2012;60:4449–52.Google Scholar

[99]

Vehmas J, Ra’di Y, Karilainen AO, Tretyakov SA. Eliminating electromagnetic scattering from small particles. IEEE Trans Antennas Propag 2013;61:3747–56.Google Scholar

[100]

Ra’di Y, Asadchy VS, Tretyakov SA. Total absorption of electromagnetic waves in ultimately thin layers. IEEE Trans Antennas Propag 2013;61:4606–14.Google Scholar

[101]

Ra’di Y, Asadchy VS, Tretyakov SA. One-way transparent sheets. Phys Rev B 2014;89:075109.Google Scholar

[102]

Sersic I, Tuambilangana C, Kampfrath T, Koenderink AF. Magnetoelectric point scattering theory for metamaterial scatterers. Phys Rev B 2011;83:245102.Google Scholar

[103]

Sersic I, van de Haar MA, Arango FB, Koenderink AF. Ubiquity of optical activity in planar metamaterial scatterers. Phys Rev Lett 2012;108:223903.Google Scholar

[104]

Albooyeh M, Asadchy VS, Alaee R, et al. Purely bianisotropic scatterers. Phys Rev B 2016;94:245428.Google Scholar

[105]

Tretyakov S, Nefedov I, Sihvola A, Maslovski S, Simovski C. Waves and energy in chiral nihility. J Electromagnet Wave 2003;17:695–706.Google Scholar

[106]

Ra’di Y, Asadchy VS, Tretyakov SA. Nihility in non-reciprocal bianisotropic media. EPJ Appl Metamat 2015;2:6.Google Scholar

[107]

Asadchy VS, Ra’di Y, Tretyakov SA. Extreme electromagnetic properties with bianisotropic nihility. In: 2015 9th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (Metamaterials’ 2015), 2015:19–21.Google Scholar

[108]

Senior T. Combined resistive and conductive sheets. IEEE Trans Antennas Propag 1985;33:577–79.Google Scholar

[109]

Idemen M. Straightforward derivation of boundary conditions on sheet simulating an anisotropic thin layer. Electron Lett 1988;24:663–5.Google Scholar

[110]

Senior TB, Volakis JL. Approximate boundary conditions in electromagnetics. London, UK: The Institute of Electrical Engineers, 1995.Google Scholar

[111]

Kuester EF, Mohamed MA, Piket-May M, Holloway CL. Averaged transition conditions for electromagnetic fields at a metafilm. IEEE Trans Antennas Propag 2003;51:2641–51.Google Scholar

[112]

Simovski CR, Kondratjev MS, Belov PA, Tretyakov SA. Interaction effects in two-dimensional bianisotropic arrays. IEEE Trans Antennas Propag 1999;47:1429–39.Google Scholar

[113]

Maslovski SI, Tretyakov SA. Full-wave interaction field in two-dimensional arrays of dipole scatterers. Int J Electron Commun (AEÜ) 1999;53:135–9.Google Scholar

[114]

Tretyakov SA. On the homogenization of dense planar arrays of scatterers. Electromagnetics 1999;19:201–10.Google Scholar

[115]

Tretyakov SA, Viitanen AJ, Maslovski SI, Saarela IE. Impedance boundary conditions for regular dense arrays of dipole scatterers. IEEE Trans Antennas Propag 2003;51:2073–8.Google Scholar

[116]

Tretyakov S. Analytical modeling in applied electromagnetics. Boston: Artech House, 2003.Google Scholar

[117]

Albooyeh M, Tretyakov S, Simovski C. Electromagnetic characterization of bianisotropic metasurfaces on refractive substrates: general theoretical framework. Ann Phys 2016;528:721–37.Google Scholar

[118]

Dimitriadis AI, Kantartzis NV, Tsiboukis TD, Hafner C. Generalized non-local surface susceptibility model and Fresnel coefficients for the characterization of periodic metafilms with bianisotropic scatterers. J Comput Phys 2015;281:251–68.Google Scholar

[119]

Dimitriadis AI, Sounas DL, Kantartzis NV, Caloz C, Tsiboukis TD. Surface susceptibility bianisotropic matrix model for periodic metasurfaces of uniaxially mono-anisotropic scatterers under oblique te-wave incidence. IEEE Trans Antennas Propag 2012;60:5753–67.Google Scholar

[120]

Achouri K, Salem MA, Caloz C. General metasurface synthesis based on susceptibility tensors. IEEE Trans Antennas Propag 2015;63:2977–91.Google Scholar

[121]

Zhao Y, Liu X-X, Alù A. Recent advances on optical metasurfaces. J Opt 2014;16:123001.Google Scholar

[122]

Yatsenko VV, Maslovski SI, Tretyakov SA, Prosvirnin SL, Zouhdi S. Plane-wave reflection from double arrays of small magnetoelectric scatterers. IEEE Trans Antennas Propag 2003;51:2–11.Google Scholar

[123]

Pfeiffer C, Grbic A. Metamaterial Huygens’ surfaces: tailoring wave fronts with reflectionless sheets. Phys Rev Lett 2013;110:197401.Google Scholar

[124]

Selvanayagam M, Eleftheriades GV. Discontinuous electromagnetic fields using orthogonal electric and magnetic currents for wavefront manipulation. Opt Exp 2013;21:14409–29.Google Scholar

[125]

Epstein A, Eleftheriades GV. Passive lossless Huygens metasurfaces for conversion of arbitrary source field to directive radiation. IEEE Trans Antennas Propag 2014;62:5680–95.Google Scholar

[126]

Asadchy VS, Albooyeh M, Tcvetkova SN, Díaz-Rubio A, Ra’di Y, Tretyakov SA. Perfect control of reflection and refraction using spatially dispersive metasurfaces. Phys Rev B 2016;94:075142.Google Scholar

[127]

Roberts CM, Inampudi S, Podolskiy VA. Diffractive interface theory: nonlocal susceptibility approach to the optics of metasurfaces. Opt Exp 2015;23:2764–76.Google Scholar

[128]

Lamb H. On the reflection and transmission of electric waves by a metallic grating. Proc London Math Soc 1898;29:523–44.Google Scholar

[129]

Yatsenko VV, Tretyakov SA, Maslovski SI, Sochava AA. Higher order impedance boundary conditions for sparse wire grids. IEEE Trans Antennas Propag 2000;48:720–7.Google Scholar

[130]

Sievenpiper D, Zhang L, Broas RFJ, Alexopolous NG, Yablonovitch E. High-impedance electromagnetic surfaces with a forbidden frequency band. IEEE Trans Microw Theory Techn 1999;47:2059–74.Google Scholar

[131]

Ra’di Y, Simovski CR, Tretyakov SA. Thin perfect absorbers for electromagnetic waves: theory, design, and realizations. Phys Rev Appl 2015;3:037001.Google Scholar

[132]

Tretyakov SA, Simovski CR. Dynamic model of artificial reactive impedance surfaces. J Electromagnet Wave 2003;17:131–45.Google Scholar

[133]

Luukkonen O, Simovski C, Granet G, et al. Simple and accurate analytical model of planar grids and high-impedance surfaces comprising metal strips or patches. IEEE Trans Antennas Propag 2008;56:1624–32.Google Scholar

[134]

Luukkonen O, Silveirinha MG, Yakovlev AB, Simovski CR, Nefedov IS, Tretyakov SA. Effects of spatial dispersion on reflection from mushroom-type artificial impedance surfaces. IEEE Trans Microw Theory Techn 2009;57:2692–9.Google Scholar

[135]

Belov PA, Tretyakov SA. Resonant reflection from dipole arrays located very near to conducting planes. J Electromaget Wave 2002;16:129–43.Google Scholar

[136]

Lagarkov A, Semenenko VN, Chistyaev VA, Ryabov DE, Tretyakov SA, Simovski CR. Resonance properties of bi-helix media at microwaves. Electromagnetics 1997;17:213–37.Google Scholar

[137]

Yatsenko VV, Tretyakov SA, Sochava AA. Reflection of electromagnetic waves from dense arrays of thin long conductive spirals. Int J Appl Electromagn Mech 1998;9:191–200.Google Scholar

[138]

Caveney S. Cuticle reflectivity and optical activity in scarab beetles: the role of uric acid. Proc R Soc Lond B Biol Sci 1971;178:205–25.Google Scholar

[139]

Sharma V, Crne M, Park JO, Srinivasarao M. Structural origin of circularly polarized iridescence in jeweled beetles. Science 2009;325:449–51.Google Scholar

[140]

Robert P. Reflector for circularly polarized waves. Mar. 1970. U.S. Classification 343/756, 343/781.00R, 343/909; International Classification H01Q19/10, H01Q19/195; Cooperative Classification H01Q19/195; European Classification H01Q19/195.Google Scholar

[141]

Roy JE, Shafai L. Reciprocal circular-polarization-selective surface. IEEE Antennas Propag M 1996;38:18–33.Google Scholar

[142]

Zhao Y, Belkin MA, Alù A. Twisted optical metamaterials for planarized ultrathin broadband circular polarizers. Nat Commun 2012;3:870.Google Scholar

[143]

Pfeiffer C, Grbic A. Bianisotropic metasurfaces for optimal polarization control: analysis and synthesis. Phys Rev Appl 2014;2:044011.Google Scholar

[144]

Morin GA. A simple circular polarization selective surface (CPSS). In: Antennas and Propagation Society International Symposium, 1990. AP-S. Merging Technologies for the 90’s. Digest. 1990;1:100–03.Google Scholar

[145]

Askarpour AN, Zhao Y, Alù A. Wave propagation in twisted metamaterials. Phys Rev B 2014;90:054305.Google Scholar

[146]

Selvanayagam M, Eleftheriades GV. Design and measurement of tensor impedance transmitarrays for chiral polarization control. IEEE Trans Microw Theory Techn 2016;64:414–28.Google Scholar

[147]

Kim M, Eleftheriades GV. Highly efficient all-dielectric optical tensor impedance metasurfaces for chiral polarization control. Opt Lett 2016;41:4831–4.Google Scholar

[148]

Munk BA. Frequency selective surfaces: theory and design. New York: John Wiley and Sons, 2000.Google Scholar

[149]

Selvanayagam M, Eleftheriades GV. Polarization control using tensor Huygens surfaces. IEEE Trans Antennas Propag 2014;62:6155–68.Google Scholar

[150]

Singh R, Plum E, Zhang W, Zheludev NI. Highly tunable optical activity in planar achiral terahertz metamaterials. Opt Express 2010;18:13425–30.Google Scholar

[151]

Shi JH, Zhu Z, Ma HF, Jiang WX, Cui TJ. Tunable symmetric and asymmetric resonances in an asymmetrical split-ring metamaterial. J Appl Phys 2012;112:073522.Google Scholar

[152]

Leon ID, Horton MJ, Schulz SA, Upham J, Banzer P, Boyd RW. Strong, spectrally-tunable chirality in diffractive metasurfaces. Sci Rep 2015;5:srep13034.Google Scholar

[153]

Amitay N, Saleh AAM. Broad-band wide-angle quasi-optical polarization rotators. IEEE Trans Antennas Propag 1983;31:73–6.Google Scholar

[154]

Torres RP, Catedra MF. Analysis and design of a two-octave polarization rotator for microwave frequency. IEEE Trans Antennas Propag 1993;41:208–13.Google Scholar

[155]

Cong L, Cao W, Zhang X, et al. A perfect metamaterial polarization rotator. Appl Phys Lett 2013;103:171107.Google Scholar

[156]

Cong L, Cao W, Tian Z, Gu J, Han J, Zhang W. Manipulating polarization states of terahertz radiation using metamaterials. New J Phys 2012;14:115013.Google Scholar

[157]

Shaltout A, Liu J, Shalaev VM, Kildishev AV. Optically active metasurface with non-chiral plasmonic nanoantennas. Nano Lett 2014;14:4426–31.Google Scholar

[158]

Svirko Y, Zheludev N, Osipov M. Layered chiral metallic microstructures with inductive coupling. Appl Phys Lett 2001;78:498–500.Google Scholar

[159]

Ye Y, He S. 90° polarization rotator using a bilayered chiral metamaterial with giant optical activity. Appl Phys Lett 2010;96:203501.Google Scholar

[160]

Menzel C, Helgert C, Rockstuhl C, et al. Asymmetric transmission of linearly polarized light at optical metamaterials. Phys Rev Lett 2010;104:253902.Google Scholar

[161]

Rogacheva AV, Fedotov VA, Schwanecke AS, Zheludev NI. Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure. Phys Rev Lett 2006;97:177401.Google Scholar

[162]

Kanda N, Konishi K, Kuwata-Gonokami M. Terahertz wave polarization rotation with double layered metal grating of complimentary chiral patterns. Opt Express 2007;15:11117–25.Google Scholar

[163]

Plum E, Zhou J, Dong J, et al. Metamaterial with negative index due to chirality. Phys Rev B 2009;79:035407.Google Scholar

[164]

Zhou J, Dong J, Wang B, Koschny T, Kafesaki M, Soukoulis CM. Negative refractive index due to chirality. Phys Rev B 2009;79:121104.Google Scholar

[165]

Decker M, Ruther M, Kriegler CE, et al. Strong optical activity from twisted-cross photonic metamaterials. Opt Lett 2009;34:2501–3.Google Scholar

[166]

Zhang S, Zhou J, Park Y-S, et al. Photoinduced handedness switching in terahertz chiral metamolecules. Nat Commun 2012;3:942.Google Scholar

[167]

Asadchy VS, Faniayeu IA, Ra’di Y, Semchenko IV, Khakhomov SA. Optimal arrangement of smooth helices in uniaxial 2d-arrays. In: 2013 7th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics. 2013:244–6.Google Scholar

[168]

Li M, Guo L, Dong J, Yang H. An ultra-thin chiral metamaterial absorber with high selectivity for LCP and RCP waves. J Phys D Appl Phys 2014;47:185102.Google Scholar

[169]

Asadchy VS, Faniayeu IA, Ra’di Y, Khakhomov SA, Semchenko IV, Tretyakov SA. Broadband reflectionless metasheets: frequency-selective transmission and perfect absorption. Phys Rev X 2015;5:031005.Google Scholar

[170]

Menzel C, Rockstuhl C, Lederer F. Advanced Jones calculus for the classification of periodic metamaterials. Phys Rev A 2010;82:053811.Google Scholar

[171]

Mutlu M, Akosman AE, Serebryannikov AE, Ozbay E. Diodelike asymmetric transmission of linearly polarized waves using magnetoelectric coupling and electromagnetic wave tunneling. Phys Rev Lett 2012;108:213905.Google Scholar

[172]

Huang C, Feng Y, Zhao J, Wang Z, Jiang T. Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures. Phys Rev B 2012;85:195131.Google Scholar

[173]

Zhang S, Liu F, Zentgraf T, Li J. Interference-induced asymmetric transmission through a monolayer of anisotropic chiral metamolecules. Phys Rev A 2013;88:023823.Google Scholar

[174]

Xu Y, Shi Q, Zhu Z, Shi J. Mutual conversion and asymmetric transmission of linearly polarized light in bilayered chiral metamaterial. Opt Express 2014;22:25679–88.Google Scholar

[175]

Wang Y-H, Shao J, Li J, Zhu M-J, Li J, Dong Z-G. Unidirectional cross polarization rotator with enhanced broadband transparency by cascading twisted nanobars. J Opt 2016;18:055004.Google Scholar

[176]

Wu L, Yang Z, Cheng Y, et al. Giant asymmetric transmission of circular polarization in layer-by-layer chiral metamaterials. Appl Phys Lett 2013;103:021903.Google Scholar

[177]

Grady NK, Heyes JE, Chowdhury DR, et al. Terahertz metamaterials for linear polarization conversion and anomalous refraction. Science 2013:1235399.Google Scholar

[178]

Cheng YZ, Withayachumnankul W, Upadhyay A, et al. Ultrabroadband reflective polarization convertor for terahertz waves. Appl Phys Lett 2014;105:181111.Google Scholar

[179]

Ma HF, Wang GZ, Kong GS, Cui TJ. Broadband circular and linear polarization conversions realized by thin birefringent reflective metasurfaces. Opt Mater Express 2014;4:1717–24.Google Scholar

[180]

Fernandes DE, Silveirinha MG. Optical tractor beam with chiral light. Phys Rev A 2015;91:061801.Google Scholar

[181]

Ra’di Y, Asadchy VS, Tretyakov SA. Tailoring reflections from thin composite metamirrors. IEEE Trans Antennas Propag 2014;62:3749–60.Google Scholar

[182]

Albooyeh M, Alaee R, Rockstuhl C, Simovski C. Revisiting substrate-induced bianisotropy in metasurfaces. Phys Rev B 2015;91:195304.Google Scholar

[183]

Elliott R. On the theory of corrugated plane surfaces. IRE Trans Antennas Propagat 1954;2:71–81.Google Scholar

[184]

Kraft M, Braun A, Luo Y, Maier SA, Pendry JB. Bianisotropy and magnetism in plasmonic gratings. ACS Photonics 2016;3:764–9.Google Scholar

[185]

Odit M, Kapitanova P, Belov P, Alaee R, Rockstuhl C, Kivshar YS. Experimental realisation of all-dielectric bianisotropic metasurfaces. Appl Phys Lett 2016;108:221903.Google Scholar

[186]

Shevchenko A, Kivijärvi V, Grahn P, Kaivola M, Lindfors K. Bifacial metasurface with quadrupole optical response. Phys Rev Appl 2015;4:024019.Google Scholar

[187]

Albooyeh M, Simovski CR. Substrate-induced bianisotropy in plasmonic grids. J Opt 2011;13:105102.Google Scholar

[188]

Yazdi M, Albooyeh M, Alaee R, et al. A bianisotropic metasurface with resonant asymmetric absorption. IEEE Trans Antennas Propag 2015;63:3004–15.Google Scholar

[189]

Balmakou A, Podalov M, Khakhomov S, Stavenga D, Semchenko I. Ground-plane-less bidirectional terahertz absorber based on omega resonators. Opt Lett 2015;40:2084–7.Google Scholar

[190]

Tretyakov SA, Viitanen AJ. Electromagnetic properties of periodical arrays with small nonreciprocal inclusions. J Electromagnet Wave 2000;14:1159–77.Google Scholar

[191]

Wang Z, Wang Z, Wang J, et al. Gyrotropic response in the absence of a bias field. Proc Natl Acad Sci 2012;109:13194–7.Google Scholar

[192]

Sounas DL, Caloz C, Alù A. Giant non-reciprocity at the subwavelength scale using angular momentum-biased metamaterials. Nat Commun 2013;4:2407.Google Scholar

[193]

Degiron A, Smith DR. One-way glass for microwaves using nonreciprocal metamaterials. Phys Rev E 2014;89:053203.Google Scholar

[194]

Mousavi SH, Khanikaev AB, Allen J, Allen M, Shvets G. Gyromagnetically induced transparency of metasurfaces. Phys Rev Lett 2014;112:117402.Google Scholar

[195]

Lindell IV, Tretyakov SA, Oksanen MI. Conductor-backed Tellegen slab as twist polariser. Electron Lett 1992;28:281–2.Google Scholar

[196]

Taravati S, Khan BA, Gupta S, Achouri K, Caloz C. Nonreciprocal nongyrotropic magnetless metasurface. IEEE Trans Antennas Propag 2017;65:3589–97.Google Scholar

[197]

Hsu L, Dupré M, Ndao A, Yellowhair J, Kanté B. Local phase method for designing and optimizing metasurface devices. Opt Express 2017;25:24974–82.Google Scholar

[198]

Popov E, Tsonev L, Maystre D. Gratings – general properties of the Littrow mounting and energy flow distribution. J Mod Opt 1990;37:367–77.Google Scholar

[199]

Popovic Z, Mortazawi A. Quasi-optical transmit/receive front ends. IEEE Trans Microw Theory Techn 1998;46:1964–75.Google Scholar

[200]

Hum SV, Perruisseau-Carrier J. Reconfigurable reflectarrays and array lenses for dynamic antenna beam control: a review. IEEE Trans Antennas Propag 2014;62:183–98.Google Scholar

[201]

Yu N, Genevet P, Kats MA, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 2011;334:333–7.Google Scholar

[202]

Kildishev AV, Boltasseva A, Shalaev VM. Planar photonics with metasurfaces. Science 2013;339:6125.Google Scholar

[203]

Monticone F, Estakhri NM, Alù A. Full control of nanoscale optical transmission with a composite metascreen. Phys Rev Lett 2013;110:203903.Google Scholar

[204]

Achouri K, Yahyaoui A, Gupta S, Rmili H, Caloz C. Dielectric resonator metasurface for dispersion engineering. IEEE Trans Antennas Propag 2017;65:673–80.Google Scholar

[205]

Decker M, Staude I, Falkner M, et al. High-efficiency dielectric Huygens’ surfaces. Adv Opt Mater 2015;3:813–20.Google Scholar

[206]

Yu YF, Zhu AY, Paniagua-Domnguez R, Fu YH, Luk’yanchuk B, Kuznetsov AI. High-transmission dielectric metasurface with 2*π* phase control at visible wavelengths. Laser Photonics Rev 2015;9:412–8.Google Scholar

[207]

Elsakka AA, Asadchy VS, Faniayeu IA, Tcvetkova SN, Tretyakov SA. Multifunctional cascaded metamaterials: integrated transmit arrays. IEEE Trans Antennas Propag 2016;64:4266–76.Google Scholar

[208]

Chen M, Abdo-Sánchez E, Epstein A, Eleftheriades GV. Experimental verification of reflectionless wide-angle refraction via a bianisotropic Huygens’ metasurface. 2017 XXXIInd General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS). 2017:1–4.Google Scholar

[209]

Epstein A, Eleftheriades GV. Arbitrary antenna arrays without feed networks based on cavity-excited omega-bianisotropic metasurfaces. IEEE Trans Antennas Propag 2017;65:1749–56.Google Scholar

[210]

Wong JPS, Epstein A, Eleftheriades GV. Reflectionless wide-angle refracting metasurfaces. IEEE Antennas Wirel Prop Lett 2016;15:1293–6.Google Scholar

[211]

Epstein A, Eleftheriades GV. Synthesis of passive lossless metasurfaces using auxiliary fields for reflectionless beam splitting and perfect reflection. Phys Rev Lett 2016;117:256103.Google Scholar

[212]

Lavigne G, Achouri K, Asadchy V, Tretyakov S, Caloz C. Susceptibility derivation and experimental demonstration of refracting metasurfaces without spurious diffraction. IEEE Trans Antennas Propag 2018;66:1–1.Google Scholar

[213]

Ra’di Y, Sounas DL, Alù A. Metagratings: beyond the limits of graded metasurfaces for wave front control. Phys Rev Lett 2017;119:067404.Google Scholar

[214]

Li Z, Huang L, Lu K, Sun Y, Min L. Continuous metasurface for high-performance anomalous reflection. Appl Phys Express 2014;7:112001.Google Scholar

[215]

Ho YZ, Cheng BH, Hsu W-L, Wang C-M, Tsai DP. Anomalous reflection from metasurfaces with gradient phase distribution below 2*π*. Appl Phys Exp 2016;9:072502.Google Scholar

[216]

Díaz-Rubio A, Asadchy V, Elsakka A, Tretyakov S. From the generalized reflection law to the realization of perfect anomalous reflectors. Sci Adv 2017;3:e1602714.Google Scholar

[217]

Mohammadi Estakhri N, Alù A. Wave-front transformation with gradient metasurfaces. Phys Rev X 2016;6:041008.Google Scholar

[218]

Asadchy VS, Wickberg A, Díaz-Rubio A, Wegener M. Eliminating scattering loss in anomalously reflecting optical metasurfaces. ACS Photonics 2017;4:1264–70.Google Scholar

[219]

Asadchy V, Daz-Rubio A, Tcvetkova S, et al. Flat engineered multichannel reflectors. Phys Rev X 2017;7:031046.Google Scholar

[220]

Collischon M, Haidner H, Kipfer P, et al. Binary blazed reflection gratings. Appl Opt 1994;33:3572–7.Google Scholar

[221]

Kwon D-H, Tretyakov SA. Perfect reflection control for impenetrable surfaces using surface waves of orthogonal polarization. Phys Rev B 2017;96:085438.Google Scholar