[1]
OIF Launches CEI-112G Project for 100G Serial Electrical Links. Available at: http://www.businesswire.com/news/home/20160830005339/en/OIF-Launches-CEI-112G-Project-100G-Serial-Electrical. Accessed 2016 Oct 10.Google Scholar
[2]
Zuo T, Zhang L, Zhou J, Zhang Q, Zhou E, Liu GN. Single lane 150-Gb/s, 100-Gb/s and 70-Gb/s 4-PAM transmission over 100-m, 300-m and 500-m MMF using 25-G class 850nm VCSEL. In: ECOC 2016 42nd European Conference and Exhibition on Optical Communications, Düsseldorf, 2016.Google Scholar
[3]
Iga K, Koyama F, Kinoshita S. Surface emitting semiconductor laser. IEEE J Quant Electron 1988;24:1845–55.Google Scholar
[4]
Tatum J. Optical components for 100 Gbps. IEEE 802.3 Higher Speed Study Group Meeting, 2006.Google Scholar
[5]
Hawkins BM, Hawthorne III RA, Guenter JK, Tatum JA, Biard JR. Reliability of various size oxide aperture VCSELs. In: Proceedings of IEEE 52nd Electronic Components and Technology Conference, pp. 540–550, 2002.Google Scholar
[6]
Mutig A, Fiol G, Moser P, et al. 120°C 20 Gbit/s operation of 980 nm VCSEL. Electron Lett 2008;44:1305–6.Google Scholar
[7]
Ledentsov NN, Shchukin VA, Lott JA. Ultrafast nanophotonic devices for optical interconnects. In: Proc. 2012 Advanced Research Workshop (FTM-7), June 25–29, 2012: Corsica, France, Future Trends in Microelectronics: Into the Cross Currents. Luryi S, Xu J, Zaslavsky A, eds. John Wiley & Sons, Inc., 2013. ISBN 978-1118-4421-6.Google Scholar
[8]
Ledentsov NN, Shchukin VA. Optoelectronic device based on an antiwaveguiding cavity. United States Patent 7,339,965, published 2008-03-04, priority date 2004 Apr 7.Google Scholar
[9]
Kropp J-R, Steinle G, Schäfer G, et al. Accelerated aging of 28 Gb s-1 850 nm vertical-cavity surface-emitting laser with multiple thick oxide apertures. Semicond Sci Technol 2015;30:045001.Google Scholar
[10]
Ledentsov NN, Shchukin VA, Lyytikäinen J, et al. Green (In,Ga,Al)P-GaP light-emitting diodes grown on high-index GaAs surfaces. Appl Phys Lett 2014;105:181902.Google Scholar
[11]
Ledentsov NN, Kropp J-R, Shchukin VA, et al. High-speed modulation, wavelength, and mode control in vertical-cavity surface-emitting lasers. In: Proc SPIE 9381, Vertical-Cavity Surface-Emitting Lasers XIX, 93810F, 93810F-10, 2015.Google Scholar
[12]
Ledentsov NN, Lott JA, Kropp J-R, et al. Progress on single-mode VCSELs for data- and telecommunications. Proc SPIE 2012;8276:8276–19.Google Scholar
[13]
Stepniak G, Lewandowski A, Kropp J-R, et al. 54 Gbit/s OOK transmission using single-mode VCSEL up to 2.2 km MMF. Electron Lett 2016;52:633–5.Google Scholar
[14]
IEEE 802.3cd 50 Gb/s, 100 Gb/s, and 200 Gb/s Ethernet Task Force, IEEE P802.3cd. Available at: http://www.ieee802.org/3/cd/index.html. Accessed 2016 Oct 10.Google Scholar
[15]
Ledentsov NN, Shchukin VA. Wavelength-tunable vertical cavity surface emitting laser and method of making same. United States Patent 6611539, published 2003-08-26, priority date 2001 May 29.Google Scholar
[16]
Ledentsov NN, Shchukin VA. Electrooptically wavelength-tunable resonant cavity optoelectronic device for high-speed data transfer. United States Patent 7369583, published 2008-05-06, priority date 2004 Jun 7.Google Scholar
[17]
Paraskevopoulos A, Hensel H-J, Molzow W-D, et al. Ultra-high-bandwidth (>35 GHz) electrooptically-modulated VCSEL. In: PDP22, Optical Fiber Communication Conference and Exposition (OFC/NFOEC) 2006, Anaheim, CA, USA, 2006.Google Scholar
[18]
Qureshi Z, Crisp MJ, Ingham JD, et al. Monolithic electro-optically modulated VCSEL suitable for radio over fibre applications to 20 GHz. In: Optical Fiber Communication Conference and Exposition (OFC/NFOEC) 2011, Los Angeles, CA, USA, 2011.Google Scholar
[19]
Penty RV, White IH, Qureshi Z, et al. Analogue modulation performance of 20 GHz vertical cavity surface emitting lasers for radio over fiber applications. Proc SPIE 2011;7933:79331D.Google Scholar
[20]
Shchukin VA, Ledentsov NN, Qureshi Z, et al. Digital data transmission using electro-optically modulated vertical-cavity surface-emitting laser with saturable absorber. Appl Phys Lett 2014;104:051125.Google Scholar
[21]
Ledentsov NN. Optoelectronic device with controlled temperature dependence of the emission wavelength and method of making same. United States Patent 8576472 B2, published 2013-11-05, priority date 2009 Sep 21.Google Scholar
[22]
Shchukin VA, Ledentsov NN, Slight T, et al. Passive cavity surface-emitting lasers: option of temperature-insensitive lasing wavelength for uncooled dense wavelength division multiplexing systems. In: Proc SPIE 9766, Vertical-Cavity Surface-Emitting Lasers XX, 976609, 2016.Google Scholar
[23]
Lott JA, Shchukin VA, Ledentsov NN, et al. Passive cavity surface emitting laser. Electron Lett 2011;47:717–8.Google Scholar
[24]
Shchukin VA, Lott JA, Ledentsov NN. Passive cavity surface–emitting and edge–emitting lasers: physics, design, and modeling. Proc SPIE 2012;8255:8255–54.Google Scholar
[25]
Haglund E, Gustavsson JS, Bengtsson J, et al. Demonstration of post-growth wavelength setting of VCSELs using high-contrast gratings. Opt Express 2016;24:1999–2005.Google Scholar
[26]
Haglund EP, Kumari S, Westbergh P, et al. Dynamic properties of silicon-integrated short-wavelength hybrid-cavity VCSEL. In: Proc SPIE 9766, Vertical-Cavity Surface-Emitting Lasers XX, 976607, 2016.Google Scholar
[27]
Rozova M, Pomplun J, Zschiedrich L, Schmidt F, Burger S. 3D finite element simulation of optical modes in VCSELs. Proc SPIE 2012;8255:82550K.Google Scholar
[28]
Adachi S. GaAs, AlAs, and AlxGa1-xAs: material parameters for use in research and device applications. J Appl Phys 1985;58:R1–29.Google Scholar
[29]
Ledentsov Jr N, Shchukin VA, Ledentsov NN, Kropp JR, Burger S, Schmidt F. Direct evidence of the leaky emission in oxide-confined vertical cavity lasers. IEEE J Quant Electro 2016;52:1–7.Google Scholar
[30]
Johnson MT. Beam steering via resonance detuning in coherently coupled vertical cavity laser arrays. Appl Phys Lett 2013;103:201115.Google Scholar
[31]
Yuan G, Stephens MD, Dandy DS, Gerding JK, Van Orden A, Lear KL. Local evanescent, array coupled (LEAC) biosensor response to low index adlayers. In: Proc. Quantum Electron. Laser Sci. Conf. CLEO, 1–2, 2006.Google Scholar
[32]
Laidig WD, Holonyak Jr N, Camras MD, et al. Disorder of an AlAs-GaAs superlattice by impurity diffusion. Appl Phys Lett 1981;38:776–8.Google Scholar
[33]
Yu SF, Li EH. Semiconductor lasers using diffused quantum-well structures. IEEE J Select Top Quant Electron 1998;4.4:723–35.Google Scholar
[34]
Shi J-W, Wei Z-R, Chi K-L, et al. Single-mode, high-speed, and high-power vertical-cavity surface-emitting lasers at 850 nm for short to medium reach (2 km) optical interconnects. J Lightwave Technol 2013;31:4037–44.Google Scholar
[35]
Ledentsov Jr N, Shchukin VA, Ledentsov NN, Kropp J-R. Design considerations for single-mode vertical-cavity surface-emitting lasers with impurity-induced intermixing. IEEE J Quant Electron 2016;52:1–6.Google Scholar
[36]
Lee CP, Margalit S, Ury I, Yariv A. GaAs‐GaAlAs injection lasers on semi‐insulating substrates using laterally diffused junctions. Appl Phys Lett 1978;32:410–2.Google Scholar
[37]
Westbergh P, Safaisini R, Haglund E, Gustavsson JS, Larsson A, Joel A. High-speed 850 nm VCSELs with 28 GHz modulation bandwidth for short reach communication. In: Proc SPIE 8639, Vertical-Cavity Surface-Emitting Lasers XVII, 86390X, 2013.Google Scholar
[38]
Kuchta DM, Schow CL, Rylyakov AV, et al. A 56.1Gb/s NRZ modulated 850nm VCSEL-based optical link. In: Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC) 2013, Anaheim, CA, USA, 2013.Google Scholar
[39]
Westbergh P, Haglund EP, Haglund E, Safaisini R, Gustavsson JS, Larsson A. High-speed 850 nm VCSELs operating error free up to 57 Gbit/s. Electron Lett 2013;49:1021–3.Google Scholar
[40]
Kuchta DM, Rylyakov AV, Schow CL, et al. 64Gb/s transmission over 57 m MMF using an NRZ modulated 850 nm VCSEL. In: Optical Fiber Communications Conference and Exhibition (OFC) 2014, San Francisco, CA, USA, 2014.Google Scholar
[41]
Kuchta DM, Rylyakov AV, Doany FE, et al. A 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link. IEEE Photon Technol Lett 2015;27:577–80.Google Scholar
[42]
Chi KL, Shi YX, Chen XN, et al. Single-mode 850-nm VCSELs for 54-Gb/s ON-OFF keying transmission over 1-km multi-mode fiber. IEEE Photon Technol Lett 2016;28:1367–70.Google Scholar
[43]
Puerta R, Agustin M, Chorchos L, et al. 107.5 Gb/s 850 nm multi- and single-mode VCSEL transmission over 10 and 100 m of multi-mode fiber. In: Optical Fiber Communications Conference and Exhibition 2016 (OFC), Anaheim, CA, USA, 2016.Google Scholar
[44]
Lu IC, Wei CC, Chen HY, et al. Very high bit-rate distance product using high-power single-mode 850-nm VCSEL with discrete multitone modulation formats through OM4 multimode fiber. IEEE J Select Top Quant Electron 2015;21:444–52.Google Scholar
[45]
Ling WA, Lyubomirsky I, Rodes R, Daghighian HM, Kocot C. Single-channel 50G and 100G discrete multitone transmission with 25G VCSEL technology. J Lightwave Technol 2015;33:761–7.Google Scholar
[46]
Bo W, Xian Z, Yanan M, et al. Single-lane 112Gbps transmission over 300m OM4 multimode fiber based on a single-transverse-mode 850nm VCSEL. In: 42nd European Conference and Exposition on Optical Communications (ECOC), Düsseldorf, 2016.Google Scholar
[47]
Bo W, Xian Z, Yanan M, et al. Towards 100 Gb/s serial optical links over 300m of multimode fibre using single transverse mode 850nm VCSEL. In: Asia Communications and Photonics Conference, Hong Kong, 2015.Google Scholar
[48]
Szczerba K, Westbergh P, Karout J, et al. 30 Gbps 4-PAM transmission over 200 m of MMF using an 850 nm VCSEL. In: 37th European Conference and Exhibition on Optical Communication (ECOC), Geneva, 2011.Google Scholar
[49]
Szczerba K, Westbergh P, Karlsson M, Andrekson PA, Larsson A. 70 Gbps 4-PAM and 56 Gbps 8-PAM using an 850 nm VCSEL. J Lightwave Technol 2015;33:1395–401.Google Scholar
[50]
Szczerba K, Westbergh P, Karlsson M, Andrekson PA, Larsson A. 60 Gbits error-free 4-PAM operation with 850 nm VCSEL. Electron Lett 2013;49:953–5.Google Scholar
[51]
Castro JM, Pimpinella R, Kose B, et al. 50 Gb/s 4-PAM over 200 m of high bandwidth MMF using a 850 nm VCSEL. In: Optical Fiber Communications Conference and Exhibition (OFC) 2015, Los Angeles, CA, USA, 2015.Google Scholar
[52]
Castro JM, Pimpinella R, Kose B, et al. Investigation of 60 Gb/s 4-PAM using an 850 nm VCSEL and multimode fiber. J Lightwave Technol 2016;34:3825–36.Google Scholar
[53]
Motaghian R, Lyubomirsky I, Daghighian H, Kocot C. 45Gb/s PAM4 VCSEL 850/940nm transmission over OM3 and OM4 multimode fibers. In: Frontiers in Optics 2015, OSA Technical Digest, 2015.Google Scholar
[54]
Stepniak G, Chorchos L, Agustin M, et al. Up to 108 Gb/s PAM 850 nm multi and single mode VCSEL transmission over 100 m of multi mode fiber. In: 2nd European Conference and Exposition on Optical Communications (ECOC), Düsseldorf, 2016.Google Scholar
[55]
Karinou F, Stojanovic N, Prodaniuc C, Zhang Q, Dippon T. 112 Gb/s PAM-4 optical signal transmission over 100-m OM4 multimode fiber for high-capacity data-center interconnects. In: 2nd European Conference and Exposition on Optical Communications (ECOC), Düsseldorf, 2016.Google Scholar
[56]
Sun Y, Lingle Jr R, Shubochkin R, et al. 51.56 Gb/s SWDM PAM4 transmission over next generation wide band multimode optical fiber. In: Optical Fiber Communications Conference and Exhibition 2016 (OFC), Anaheim, CA, USA, 1–3, 2016.Google Scholar
[57]
Lengyel T, Szczerba K, Karlsson M, Larsson A, Andrekson P. Demonstration of a 71.8 Gbps 4-PAM 850 nm VCSEL-based link with a pre-emphasizing passive filter. In: 42nd European Conference and Exposition on Optical Communications (ECOC), Düsseldorf, 2016.Google Scholar
[58]
Lavrencik J, Varughese S, Thomas VA, et al. 100Gbps PAM-4 transmission over 100m OM4 and wideband fiber using 850nm VCSELs. In: 42nd European Conference and Exposition on Optical Communications (ECOC), Düsseldorf, 2016.Google Scholar
[59]
Szczerba K, Karlsson M, Andrekson P, Larsson A, Agrell E. 35.2 Gbps 8-PAM transmission over 100 m of MMF using an 850 nm VCSEL. In: 39th European Conference and Exhibition on Optical Communication (ECOC), London, 2013.Google Scholar