[1]

Th. Udem, R. Holzwarth & T. W. Hänsch, “Optical frequency metrology,” Nature **416**, 233-237 (2002).Google Scholar

[2]

S. T. Cundiff and Jun Ye, “Colloquium: Femtosecond optical frequency combs,” Rev. Mod. Phys. **75**, 325 (2003).Google Scholar

[3]

S. A. Diddams, Th. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, D. J. Wineland, “An Optical Clock Based on a Single Trapped ^{199}Hg^{+} Ion,” Science **293**(5531), 825-828, (2001).Google Scholar

[4]

H. S. Margolis, G. P. Barwood, G. Huang, H. A. Klein, S. N. Lea, K. Szymaniec, P. Gill, “Hertz-Level Measurement of the Optical Clock Frequency in a Single 88Sr+ Ion,” Science **306**(5700) 1355-1358 (2004).Google Scholar

[5]

K. Takahata, T. Kobayashi, H. Sasada, Y. Nakajima, H. Inaba, and F.-L. Hong, “Absolute frequency measurement of sub-Doppler molecular lines using a 3.4–*μ*m difference-frequencygeneration spectrometer and a fiber-based frequency comb,” Phys. Rev. A **80**, 032518 (2009)Google Scholar

[6]

A. Schliesser, M. Brehm, F. Keilmann, and D. W. van der Weide, “Frequency-comb infrared spectrometer for rapid, remote chemical sensing,” Opt. Exp. **13**(22) 9029-9038 (2005).Google Scholar

[7]

G. B. Rieker, F. R. Giorgetta, W. C. Swann, J. Kofler, A. M. Zolot, L. C. Sinclair, E. Baumann, C. Cromer, G. Petron, C. Sweeney, P. P. Tans, I. Coddington, and N. R. Newbury, “Frequency-combbased remote sensing of greenhouse gases over kilometer air paths,” Optica **1**(5) 290-298 (2014).Google Scholar

[8]

S. T. Cundiff and A. M. Weiner, “Optical arbitrary waveform generation,” Nat. Photon. **4**, 760-766 (2010).Google Scholar

[9]

G. G. Ycas, F. Quinlan, S. A. Diddams, S. Osterman, S. Mahadevan, S. Redman, R. Terrien, L. Ramsey, C. F. Bender, B. Botzer, and S. Sigurdsson, “Demonstration of on-sky calibration of astronomical spectra using a 25 GHz near-IR laser frequency comb,” Opt. Exp. **20**(6) 6631-6643 (2012).Google Scholar

[10]

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science **321**, 1335–1337 (2008).Google Scholar

[11]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-Based Optical Frequency Combs,” Science **332**, 555 (2011).Google Scholar

[12]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature **450**, 1214-1217 (2007).Google Scholar

[13]

P. Del’Haye, O. Arcizet, A. Schliesser, R. Holzwarth, and T. J. Kippenberg, “Full Stabilization of a Microresonator-Based Optical Frequency Comb,” Phys. Rev. Lett. **101**, 053903 (2008).Google Scholar

[14]

P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave Spanning Tunable Frequency Comb from a Microresonator,” Phys. Rev. Lett. **107**, 063901 (2011).Google Scholar

[15]

W. Liang, A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, D. Seidel, and L. Maleki, “Generation of near-infrared frequency combs from a MgF_{2} whispering gallery mode resonator,” Optics Lett. 36, 2290 (2011)Google Scholar

[16]

I. S. Grudinin, L. Baumgartel, and N. Yu, “Frequency comb from a microresonator with engineered spectrum,” Opt. Exp. **20** (6), 6604-6609 (2012)Google Scholar

[17]

C.Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T.W. Hänsch, N. Picque, and T. J. Kippenberg, “Midinfrared optical frequency combs at 2.5 μm based on crystalline microresonators” Nat. Comm. **4**, 1345 (2013)Google Scholar

[18]

A. A. Savchenkov, A. B. Matsko, D. Strekalov, M. Mohageg, V. S. Ilchenko, and L. Maleki, “Low Threshold Optical Oscillations in a Whispering Gallery Mode CaF_{2} Resonator,” Phys. Rev. Lett. **93**, 243905 (2004).Google Scholar

[19]

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, I. Solomatine, D. Seidel, and L. Maleki, “Tunable Optical Frequency Comb with a Crystalline Whispering Gallery Mode Resonator,” Phys. Rev. Lett. **101**, 093902 (2008)Google Scholar

[20]

I. S. Grudinin, N. Yu, and L. Maleki, “Generation of optical frequency combs with a CaF2 resonator,” Optics Lett. **34**, 878 (2009)Google Scholar

[21]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photon. **4**, 37 (2010)Google Scholar

[22]

Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, and A. L. Gaeta, “Octave-spanning frequency comb generation in a silicon nitride chip,” Opt. Lett. **36**, 3398 (2011)Google Scholar

[23]

A. R. Johnson, Y. Okawachi, J. S. Levy, J. Cardenas, K. Saha, M. Lipson, and A. L. Gaeta, “Chip-based frequency combs with sub-100 GHz repetition rates,” Opt. Lett. **37**, 875 (2012)Google Scholar

[24]

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photon. **5**, 770-776 (2011).Google Scholar

[25]

Y. Liu, Y. Xuan, X. Xue, P.-H. Wang, S. Chen, A. J. Metcalf, J. Wang, D. E. Leaird, M. Qi, and A. M. Weiner, “Investigation of mode coupling in normal-dispersion silicon nitride microresonators for Kerr frequency comb generation,” Optica, **1**(3), 137-144 (2014).Google Scholar

[26]

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photon. **4**, 41 (2010).Google Scholar

[27]

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” **7**, 597-607 (2013).Google Scholar

[28]

A. G. Griffith, R. K.W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Comm. **6**, 6299 (2015).Google Scholar

[29]

B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Loncar, “Diamond nonlinear photonics,” Nat. Photon. **8,** 369-374 (2014).Google Scholar

[30]

H. Jung, C. Xiong, K. Y. Fong, X. Zhang, and H. X. Tang, “Optical frequency comb generation from aluminum nitride microring resonator,” Opt. Lett. **38**(15), 2810-2813 (2013).Google Scholar

[31]

H. Jung, K. Y. Fong, C. Xiong, and H. X. Tang, “Electrical tuning and switching of an optical frequency comb generated in aluminum nitride microring resonators,” **39** (1), 84-87 (2014).Google Scholar

[32]

H. Jung, R. Stoll, X. Guo, D. Fischer, and H. X. Tang, “Green, red, and IR frequency comb line generation from single IR pump in AlN microring resonator,” **1**(6), 396-399 (2014).Google Scholar

[33]

C. Xiong, W. H. P. Pernice, and H. X. Tang, “Low-loss, silicon integrated, aluminum nitride photonic circuits and their use for electro-optic signal processing,” Nano Lett. **12**, 3562 (2012).Google Scholar

[34]

W. H. P. Pernice, C. Xiong, C. Schuck, and H. X. Tang, “Second harmonic generation in phase matched aluminum nitride waveguides and micro-ring resonators,” Appl. Phys. Lett. **100**, 223501 (2012).Google Scholar

[35]

C. Xiong, W. Pernice, X. Sun, C. Schuck, K. Y Fong and H. X Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys. **14** 095014 (2012).Google Scholar

[36]

P. M. Lundquist, W. P. Lin, Z. Y. Xu, G. K. Wong, E. D. Rippert, J. A. Helfrich, and J. B. Ketterson, “Ultraviolet second harmonic generation in radio-frequency sputter-deposited aluminum nitride thin films,” Appl. Phys. Lett. **65**, 1085 (1994).Google Scholar

[37]

P. Gräupner, J. C. Pommier, A. Cachard and J. L. Coutaz, “Electrooptical effect in aluminum nitride waveguides,” J. Appl. Phys. **71,** 4136 (1992).Google Scholar

[38]

W. P. Lin, P. M. Lundquist, G. K. Wong, E. D. Rippert, and J. B. Ketterson, “Second order optical nonlinearities of radio frequency sputter-deposited AIN thin films,” Appl. Phys. Lett. **63**, 2875-2877 (1993).Google Scholar

[39]

M. Feneberg, R. A. R. Leute, B. Neuschl, K. Thonke, and M. Bickermann, “High-excitation and high-resolution photoluminescence spectra of bulk AlN,” Phys. Rev. B **82**, 075208 (2010).Google Scholar

[40]

J. Li, K. B. Nam, M. L. Nakarmi, J. Y. Lin, H. X. Jiang, P. Carrier, and S.-H. Wei, “Band structure and fundamental optical transitions in wurtzite AlN,” Appl. Phys. Lett. **83**, 5163 (2003).Google Scholar

[41]

Yoshitaka Taniyasu, Makoto Kasu, and Toshiki Makimoto, “An aluminium nitride light-emitting diode with a wavelength of 210 nanometres,” Nature **441**, 325-328 (2006).Google Scholar

[42]

P. T. Lin, H. Jung, L. C. Kimerling, A. Agarwal, and H. X. Tang, “Low-loss aluminium nitride thin film for mid-infrared microphotonics,” Laser Photon. Rev. **8** (2), L23-L28 (2014).Google Scholar

[43]

G. A. Slack, R. A. Tanzilli. R. O. Pohl, and J. W. Vandersande, “The intrinsic thermal conductivity of AIN,” J. Phys. Chem. Solids, **48** (7) 641-647 (1987).Google Scholar

[44]

N. Watanabe, T. Kimoto, and J. Suda, “The temperature dependence of the refractive indices of GaN and AlN from room temperature up to 515 °C,” J. Appl. Phys. **104**, 106101 (2008).Google Scholar

[45]

V. V. Felmetsger, P. N. Laptev and R. J. Graham, “Deposition of ultrathin AlN films for high frequency electroacoustic devices,” J. Vac. Sci. Technol. A **29**, 021014 (2011).Google Scholar

[46]

A. Saxler, P. Kung, C. J. Sun, E. Bigan, and M. Razeghi, “High quality aluminum nitride epitaxial layers grown on sapphire substrates,” Appl. Phys. Lett. **64**, 339 (1994).Google Scholar

[47]

C. Schwab, J. F. P. Spronckb, A. Tokovininc, and D. A. Fischer, “Design of the CHIRON high-resolution spectrometer at CTIO,” Proc. SPIE **7735**, 77354G, (2010).Google Scholar

[48]

C. Schwab, J. F. P. Spronckb, A. Tokovininc, A. Szymkowiaka, M. Giguerea and D. A. Fischer, “Performance of the CHIRON highresolution Echelle spectrograph,” Proc. SPIE **8446**, 84460B, (2012).Google Scholar

[49]

C. Xiong, W. Pernice, K. K. Ryu, C. Schuck, K. Y. Fong, T. Palacios, and H. X. Tang, “Integrated GaN photonic circuits on silicon (100) for second harmonic generation,” Opt. Express, **19**, 10462 (2011).Google Scholar