[1]

Harris SE. Induced transparency. Phys Today 1997;50:36.Google Scholar

[2]

Opatrný T, Welsch DG. Coupled cavities for enhancing the cross-phase-modulation in electromagnetically induced transparency. Phys Rev A 2001;64:023805.Google Scholar

[3]

Naweed A, Farca G, Shopova SI, Rosenberger AT. Induced transparency and absorption in coupled whispering-gallery microresonators. Phys Rev A 2005;71:043804.Google Scholar

[4]

Liu YC, Li BB, Xiao YF. Electromagnetically induced transparency in optical microcavities. Nanophotonics 2017;6:789–811.Google Scholar

[5]

Fan SH. Sharp asymmetric line shapes in side-coupled waveguide-cavity systems. Appl Phys Lett 2002;80:908–10.Google Scholar

[6]

Totsuka K, Kobayashi N, Tomita M. Slow light in coupled-resonator-induced transparency. Phys Rev Lett 2007;98:213904.Google Scholar

[7]

Xu QF, Dong P, Lipson M. Breaking the delay-bandwidth limit in a photonic structure. Nat Phys 2007;3:406–10.Google Scholar

[8]

Peng C, Li ZB, Xu AS. Optical gyroscope based on a coupled resonator with the all-optical analogous property of electromagnetically induced transparency. Opt Express 2007;15:3864–75.Google Scholar

[9]

Di K, Xie CD, Zhang J. Coupled-resonator-induced transparency with a squeezed vacuum. Phys Rev Lett 2011;106:153602.Google Scholar

[10]

Yang XD, Yu MB, Kwong DL, Wong CW. All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities. Phys Rev Lett 2009;102:173902.Google Scholar

[11]

Liu N, Langguth L, Weiss T, et al. Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. Nat Mater 2009;8:758–62.Google Scholar

[12]

Liu N, Weiss T, Mesch M, et al. Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing. Nano Lett 2010;10:1103–7.Google Scholar

[13]

Zhang S, Genov D, Wang Y, Liu M, Zhang X. Plasmon-induced transparency in metamaterials. Phys Rev Lett 2008;101:047401.Google Scholar

[14]

Luk’yanchuk B, Zheludev NI, Maier SA, et al. The Fano resonance in plasmonic nanostructures and metamaterials. Nat Mater 2010;9:707–15.Google Scholar

[15]

Peng B, Ozdemir SW, Chen WJ, Nori F, Yang L. What is and what is not electromagnetically induced transparency in whispering-gallery microcavities. Nat Commun 2014;5:5082.Google Scholar

[16]

Kippenberg TJ, Spillane SM, Vahala KJ. Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity. Phys Rev Lett 2004;93:083904.Google Scholar

[17]

Park Y, Cook AK, Wang HL. Cavity QED with diamond nanocrystals and silica microspheres. Nano Lett 2006;6:2075–9.Google Scholar

[18]

Götzinger S, Menezes DSL, Mazzei A, Kühn S, Sandoghdar V, Benson O. Controlled photon transfer between two individual nanoemitters via shared high-Q modes of a microsphere resonator. Nano Lett 2006;6:1151–4.Google Scholar

[19]

Vollmer F, Yang L. Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices. Nanophotonics 2012;1:267–91.Google Scholar

[20]

Toren P, Ozgur E, Bayindir M. Oligonucleotide-based label-free detection with optical microresonators: strategies and challenges. Lab Chip 2016;16:2572–95.Google Scholar

[21]

Yang SC, Wang Y, Sun HD. Advances and prospects for whispering gallery mode microcavities. Adv Optical Mater 2015;3:1136–62.Google Scholar

[22]

Shen Z, Zhang YL, Chen Y, et al. Experimental realization of optomechanically induced non-reciprocity. Nat Photonics 2016;10:657–61.Google Scholar

[23]

Xavier J, Vincent S, Meder F, Vollmer F. Advances in optoplasmonic sensors-combining optical nano/microcavities and photonic crystals with plasmonic nanostructures and nanoparticles. Nanophotonics 2018;7:1–38.Google Scholar

[24]

Klusmann C, Oppermann J, Forster P, Rockstuhl C, Kalt H. Identification of dielectric, plasmonic, and hybrid modes in metal coated whispering-gallery-mode resonators. ACS Photonics 2018;5:2365–73.Google Scholar

[25]

Jiang XF, Shao LB, Zhang SX, et al. Chaos-assisted broadband momentum transformation in optical microresonators. Science 2017;358:344–7.Google Scholar

[26]

Zhang N, Gu ZY, Liu S, et al. Far-field single nanoparticle detection and sizing. Optica 2017;4:1151–6.Google Scholar

[27]

Heylman KD, Knapper KA, Horak EH, Rea MT, Vanga SK, Goldsmith RH. Optical microresonators for sensing and transduction: a materials perspective. Adv Mater 2017;29:1700037.Google Scholar

[28]

Suh MG, Yang QF, Yang KY, Yi X, Vahala KJ. Microresonator soliton dual-comb spectroscopy. Science 2016;354:600–3.Google Scholar

[29]

Kim E, Baaske MD, Schuldes I, Wilsch PS, Vollmer F. Label-free optical detection of single enzyme-reactantreactions and associated conformational changes. Sci Adv 2017;3:e1603044.Google Scholar

[30]

Shen X, Beltran, RC, Diep VM, Soltani S, Armani AM. Low-threshold parametric oscillation in organically modified microcavities. Sci Adv 2018;4:eaao4507.Google Scholar

[31]

Liu S, Sun WZ, Wang YJ, et al. End-fire injection of light into high-Q silicon microdisks. Optica 2018;5:612–6.Google Scholar

[32]

Spencer DT, Drake T, Briles TC, et al. An optical-frequency synthesizer using integrated photonics. Nature 2018;557: 81–5.Google Scholar

[33]

Zheng YL, Yang JF, Shen ZH, et al. Optically induced transparency in a micro-cavity. Light Sci Appl 2016;5:e16072.Google Scholar

[34]

Wang Y, Zhang K, Zhou S, Wu YH, Chi MB, Hao P. Coupled-mode induced transparency in a bottle whispering-gallery-mode resonator. Opt Lett 2016;41:1825–8.Google Scholar

[35]

Yang Y, Saurabh S, Ward J, Chormaic SN. Coupled-mode-induced transparency in aerostatically tuned microbubble whispering-gallery resonators. Opt Lett 2015;40:1834–7.Google Scholar

[36]

Weis S, Rivière R, Deléglise S, et al. Optomechanically induced transparency. Science 2010;330:1520–3.Google Scholar

[37]

Xiao YF, He LN, Zhu JG, Yang L. Electromagnetically induced transparency-like effect in a single polydimethylsiloxane-coated silica microtoroid. Appl Phys Lett 2009;94:231115.Google Scholar

[38]

Yoshiki W, Honda Y, Tetsumoto T, Furusawa K, Sekine N, Tanabe T. All-optical tunable buffering with coupled ultra-high Q whispering gallery mode microcavities. Sci Rep 2017;7:10688.Google Scholar

[39]

Li GY, Jiang XS, Hua SY, Qin YC, Xiao M. Optomechanically tuned electromagnetically induced transparency-like effect in coupled optical microcavities. Appl Phys Lett 2016;109:261106.Google Scholar

[40]

Xu QF, Sandhu S, Povinelli ML, Shakya J, Fan SH, Lipson M. Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency. Phys Rev Lett 2006;96:123901.Google Scholar

[41]

Soltani M, Yegnanarayanan S, Adibi A. Ultra-high Q planar silicon microdisk resonators for chip-scale silicon photonics. Opt Express 2007;15:4694–704.Google Scholar

[42]

Pöllinger M, O’Shea D, Warken F, Rauschenbeutel A. Ultrahigh-tunable whispering-gallery-mode microresonator. Phys Rev Lett 2009;103:053901.Google Scholar

[43]

Asano M, Takeuchi Y, Chen WJ, et al. Observation of optomechanical coupling in a microbottle resonator. Laser Photon Rev 2016;10:603–11.Google Scholar

[44]

Liu Y, Shi L, Xu XB, et al. All-optical tuning of a magnetic-fluid-filled optofluidic ring resonator. Lab Chip 2014;14:3004–10.Google Scholar

[45]

Bo F, Wang J, Cui J, et al. Lithium-niobate-silica hybrid whispering-gallery-mode resonators. Adv Mater 2015;27:8075–81.Google Scholar

[46]

Zhu S, Shi L, Yuan SX, Xu XB, Zhang XL. All-optical control of ultrahigh-Q silica microcavities with iron oxide nanoparticles. Opt Lett 2017;42:5133–6.Google Scholar

[47]

Murugan GS, Wilkinson JS, Zervas MN. Selective excitation of whispering gallery modes in a novel bottle microresonator. Opt Express 2009;17:11916–25.Google Scholar

[48]

Schlegel A, Alvarado SF, Wachter P. Optical properties of magnetite (Fe_{3}O_{4}). J Phys C Solid State Phys 1979;12:1157.Google Scholar

[49]

Zhao P, Shi L, Liu Y, Wang ZQ, Zhang XL. Compact in-line optical notch filter based on an asymmetric microfiber coupler. Appl Opt 2013;52:8834–9.Google Scholar

[50]

Wang KY, Gu ZY, Sun WZ, Li JK, Xiao SM, Song QH. Quasi-guiding Modes in Microfibers on a High Refractive Index Substrate. ACS Photonics 2015;2:1278–83.Google Scholar

[51]

Trebaol S, Dumeige Y, Féron P. Ringing phenomenon in coupled cavities: application to modal coupling in whispering-gallery-mode resonators. Phys Rev A 2010;81:043828.Google Scholar

[52]

Zamora V, Díez A, Andrés MV, Gimeno B. Refractometric sensor based on whispering-gallery modes of thin capillaries. Opt Express 2007;15:12011–6.Google Scholar