[1]

Sirtori C. Applied physics: bridge for the terahertz gap. Nature 2002;417:132–3.Google Scholar

[2]

Tonouchi M. Cutting-edge terahertz technology. Nat Photonics 2007;1:97–105.Google Scholar

[3]

Nagatsuma T, Ducournau G, Renaud CC. Advances in terahertz communications accelerated by photonics. Nat Photonics 2016;10:371–9.Google Scholar

[4]

Wun JM, Lai CH, Chen NW, Bowers JE, Shi JW. Flip-chip bonding packaged THz photodiode with broadband high-power performance. IEEE Photon Technol Lett 2014;26:2462–4.Google Scholar

[5]

Köhler R, Tredicucci A, Beltram F, et al. Terahertz semiconductor-heterostructure laser. Nature 2002;417:156–9.Google Scholar

[6]

Rösch M, Scalari G, Beck M, Faist J. Octave-spanning semiconductor laser. Nat Photonics 2015;9:42–7.Google Scholar

[7]

Jung S, Hyun Kim JAE, Jiang Y, Vijayraghavan K, Belkin MA. Terahertz difference-frequency quantum cascade laser sources on silicon. Optica 2017;4:38–43.Google Scholar

[8]

Lu Q, Wu D, Sengupta S, Slivken S, Razeghi M. Room temperature continuous wave, monolithic tuneable THz sources based on highly efficient mid-infrared quantum cascade lasers. Sci Rep 2016;6:23595.Google Scholar

[9]

Jung S, Jiang A, Jiang Y, Vijayraghavan K, Belkin MA. Broadly tunable monolithic room-temperature terahertz quantum cascade laser sources. Nat Commun 2014;5:4267.Google Scholar

[10]

Nagatsuma T, Horiguchi S, Minamikata Y, et al. Terahertz wireless communications based on photonics technologies. Opt Express 2013;21:477–87.Google Scholar

[11]

Koppens FHL, Mueller T, Avouris P, Ferrari AC, Vitiello MS, Polini M. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat Nanotech 2014;9:780–93.Google Scholar

[12]

Sun Z, Chang H. Graphene and graphene-like two-dimensional materials in photodetection: mechanisms and methodology. ACS Nano 2014;8:4133–56.Google Scholar

[13]

Degl’Innocenti R, Xiao L, Jessop DS, et al. Fast room temperature detection of terahertz quantum cascade lasers with graphene loaded bow-tie plasmonic antenna arrays. ACS Photon 2016;3:1747−53.Google Scholar

[14]

Cai X, Sushkov AB, Suess RJ, et al. Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene. Nat Nanotech 2014;9:814–9.Google Scholar

[15]

Degl’Innocenti R, Xiao L, Kindness SJ, et al. Bolometric detection of terahertz quantum cascade laser radiation with graphene-plasmonic antenna arrays. J Phys D: Appl Phys 2017;50:174001.Google Scholar

[16]

Yariv A. Quantum electronics. 3rd ed. New York, USA, John Wiley and Sons, 1989, pp. 307–313.Google Scholar

[17]

Degl’Innocenti R, Majkic A, Vorburger P, Poberaj G, Günter P, Döbeli M. Ultraviolet electro-optic amplitude modulation in β-BaB_{2}O_{4} waveguides. Appl Phys Lett 2007;91:051105.Google Scholar

[18]

Maier SA. Plasmonics: fundamentals and applications. New York, USA, Springer, 2007, p. 15.Google Scholar

[19]

Chen S, Fan F, Miao Y, He X, Zhang K, Changa S. Ultrasensitive terahertz modulation by silicon-grown MoS_{2} nanosheets. Nanoscale 2016;8:4713–19.Google Scholar

[20]

Cao Y, Gan S, Geng Z, et al. Optically tuned terahertz modulator based on annealed multilayer MoS_{2}. Sci Rep 2016;6:22899.Google Scholar

[21]

Boyd DA, Lin WH, Hsu CC, et al. Single-step deposition of high-mobility graphene at reduced temperatures. Nat Commun 2015;6:6620.Google Scholar

[22]

Banszerus L, Schmitz M, Engels S, et al. Ultrahigh-mobility graphene devices from chemical vapor deposition on reusable copper. Sci Adv 2015;1:e1500222.Google Scholar

[23]

Efotov DK, Kim P. Controlling electron-phonon interactions in graphene at ultrahigh carrier densities. Phys Rev Lett 2010;105:256806.Google Scholar

[24]

Gusynin VP, Sharapov SG, Carbotte JP. On the universal ac optical background in graphene. New J Phys 2009;11:095013.Google Scholar

[25]

Dawlaty JM, Shivaraman S, Strait J, et al. Measurement of the optical absorption spectra of epitaxial graphene from terahertz to visible. Appl Phys Lett 2008;93:131905.Google Scholar

[26]

Freitag M, Low T, Xia F, Avouris P. Photoconductivity of biased graphene. Nat Photonics 2013;7:53–9.Google Scholar

[27]

George PA, Strait J, Dawlaty J, et al. Ultrafast optical-pump terahertz-probe spectroscopy of the carrier relaxation and recombination dynamics in epitaxial graphene. Nano Lett 2008;8:4248–51.Google Scholar

[28]

Jnawali G, Rao Y, Yan H, Heinz TF. Observation of a transient decrease in terahertz conductivity of single-layer graphene induced by ultrafast optical excitation. Nano Lett 2013;13:524–30.Google Scholar

[29]

Bao Q, Loh KP. Graphene photonics, plasmonics and broadband optoelectronic devices. ACS Nano 2012;6:3677–94.Google Scholar

[30]

Jablan M, Buljan H, Soljacic M. Plasmonics in graphene at infrared frequencies. Phys Rev B 2009;80:245435.Google Scholar

[31]

Sensale-Rodriguez B, Yan R, Liu L, et al. Graphene for reconfigurable terahertz optoelectronics. Proc IEEE 2013;101:1705–16.Google Scholar

[32]

Withayachumnankul W, Abbott D. Metamaterials in the terahertz regime. IEEE Photon J 2009;1:99–118.Google Scholar

[33]

Rahm M, Li JS, Padilla WJ. THz wave modulators: a brief review on different modulation techniques. J Infrared Millim Terahertz Waves 2013;34:1–27.Google Scholar

[34]

Zheludev NI, Kivshar YS. From metamaterials to metadevices. Nat Mater 2012;11:917–24.Google Scholar

[35]

Zheludev NI. The road ahead for metamaterials. Science 2010;328:582–3.Google Scholar

[36]

Zheludev NI, Plum E. Reconfigurable nanomechanical photonic metamaterials. Nat Nanotech 2016;11:16–22.Google Scholar

[37]

Jahani S, Jacob Z. All-dielectric metamaterials. Nat Nanotech 2016;11:23–36.Google Scholar

[38]

Chen HT, Taylor AJ, Yu N. A review of metasurfaces: physics and applications. Rep Prog Phys 2016;79:076401.Google Scholar

[39]

Prinz VY, Naumova EV, Golod SV, Seleznev VA, Bocharov AA, Kubarev VV. Terahertz metamaterials and systems based on rolled-up 3D elements: designs, technological approaches, and properties. Sci Rep 2017;7:43334.Google Scholar

[40]

Xie Z, Wang X, Ye J, et al. Spatial terahertz modulator. Sci Rep 2013;3:3347.Google Scholar

[41]

Weis P, Garcia-Pomar J, Hoeh M, Reinhard B, Brodyanski A, Rahm M. Spectrally wide-band terahertz wave modulator based on optically tuned graphene. ACS Nano 2012;6: 9118–24.Google Scholar

[42]

Okada T, Tanaka K. Photo-designed terahertz devices. Sci Rep 2011;1:121.Google Scholar

[43]

Zhang B, He T, Shen J, et al. Conjugated polymer-based broadband terahertz wave modulator. Opt Lett 2014;39: 6110–3.Google Scholar

[44]

Mezzapesa FP, Columbo LL, Rizza C, et al. Photo-generated metamaterials induce modulation of CW terahertz quantum cascade lasers. Sci Rep 2015;5:16207.Google Scholar

[45]

Wen QY, Tian W, Mao Q, et al. Graphene based all-optical spatial terahertz modulator. Sci Rep 2014;4:7409.Google Scholar

[46]

Deng L, Teng J, Liu H, et al. Direct optical tuning of the terahertz plasmonic response on InSb subwavelength gratings. Adv Opt Mater 2013;1:128–32.Google Scholar

[47]

Padilla WJ, Taylor AJ, Highstrete C, Lee M, Averitt RD. Dynamical electric and magnetic metamaterial response at terahertz frequencies. Phys Rev Lett 2006;96:107401.Google Scholar

[48]

Chen HT, O’Hara JF, Azad AK, et al. Experimental demonstration of frequency-agile terahertz metamaterials. Nat Photonics 2008;2:295–8.Google Scholar

[49]

Kleine-Ostmann T, Dawson P, Pierz K, Hein G, Koch M. Room-temperature operation of an electrically driven terahertz modulator. Appl Phys Lett 2004;84:3555–7.Google Scholar

[50]

Chen HT, Padilla WJ, Zide JMO, Gossard AC, Taylor AJ, Averitt RD. Active terahertz metamaterial devices. Nature 2006;444:597–600.Google Scholar

[51]

Chen HT, Padilla WJ, Cich MJ, Azad AK, Averitt RD, Taylor AJ. A metamaterial solid-state terahertz phase modulator. Nat Photonics 2009;3:148–51.Google Scholar

[52]

Sensale-Rodriguez B, Yan R, Kelly MM, et al. Broadband graphene terahertz modulators enabled by intraband transitions. Nat Commun 2012;3:780.Google Scholar

[53]

Sensale Rodriguez B, Yan R, Rafique S, et al. Extraordinary control of terahertz beam reflectance in graphene electro-absorption modulators. Nano Lett 2012;12:4518–22.Google Scholar

[54]

Shrekenhamer D, Chen W-C, Padilla WJ. Liquid crystal tunable metamaterial absorber. Phys Rev Lett 2013;110:177403.Google Scholar

[55]

Savo S, Shrekenhamer D, Padilla WJ. Liquid crystal metamaterial absorber spatial light modulator for THz applications. Adv Opt Mater 2014;2:275–9.Google Scholar

[56]

Chikhi N, Lisitskiy M, Papari G, Tkachenko V, Andreone A. A hybrid tunable THz metadevice using a high birefringence liquid crystal. Sci Rep 2016;6:34536.Google Scholar

[57]

Vasic B, Zografopoulos DC, Isic G, Beccherelli R, Gajic R. Electrically tunable terahertz polarization converter based on overcoupled metal-isolator-metal metamaterials infiltrated with liquid crystals. Nanotechnology 2017;28:124002.Google Scholar

[58]

Pitchappa P, Manjappa M, Ho CP, Singh R, Singh N, Prakash CL. Active control of electromagnetically induced transparency analog in terahertz MEMS metamaterial. Adv Opt Mater 2016;4:541–7.Google Scholar

[59]

Ma F, Lin YS, Zhang X, Lee C. Tunable multiband terahertz metamaterials using a reconfigurable electric split-ring resonator array. Light Sci Appl 2014;3:e171.Google Scholar

[60]

Han Z, Kohno K, Fujita H, Hirakawa K, Toshiyoshi H. MEMS reconfigurable metamaterial for terahertz switchable filter and modulator. Opt Express 2014;22:21326–39.Google Scholar

[61]

Li J, Shah CM, Withayachumnankul W, et al. Mechanically tunable terahertz metamaterials. Appl Phys Lett 2013;102:121101.Google Scholar

[62]

Unlu M, Hashemi MR, Berry CW, Li S, Yang SH, Jarrahi M. Switchable scattering meta-surfaces for broadband terahertz modulation. Sci Rep 2014;4:5708.Google Scholar

[63]

Lee SH, Choi M, Kim TT, et al. Switching terahertz waves with gate-controlled active graphene metamaterials. Nat Mater 2012;11:936–41.Google Scholar

[64]

Valmorra F, Scalari G, Maissen C, et al. Low-bias active control of terahertz waves by coupling large-area CVD graphene to a terahertz metamaterial. Nano Lett 2013;13:3193–8.Google Scholar

[65]

Degl‘Innocenti R, Jessop DS, Shah YD, et al. Low-bias THz amplitude modulator based on split-ring resonators and graphene. ACS Nano 2014;8:2548–54.Google Scholar

[66]

Liang G, Hu X, Yu X, et al. Integrated terahertz graphene modulator with 100% modulation depth. ACS Photon 2015;2:1559–66.Google Scholar

[67]

Degl’Innocenti R, Jessop DS, Sol CWO, et al. Fast modulation of terahertz quantum cascade lasers using graphene loaded plasmonic antennas. ACS Photon 2016;3:464–70.Google Scholar

[68]

Jessop DS, Kindness SJ, Xiao L, et al. Graphene based plasmonic terahertz amplitude modulator operating above 100 MHz. Appl Phys Lett 2016;108:17110.Google Scholar

[69]

Singh PK, Sonkusale S. High speed terahertz modulator on the chip based on tunable terahertz slow waveguide. Sci Rep 2017;7:40933.Google Scholar

[70]

Zhang Y, Qiao S, Liang S, et al. Gbps terahertz external modulator based on a composite metamaterial with a double-channel heterostructure. Nano Lett 2015;15:3501–6.Google Scholar

[71]

Mittendorff M, Li S, Murphy TE. Graphene-based waveguide-integrated terahertz modulator. ACS Photon 2017;4:316–21.Google Scholar

[72]

Liu PQ, Luxmoore IJ, Mikhailov SA, et al. Highly tunable hybrid metamaterial employing split-ring resonators strongly coupled to graphene surface plasmons. Nat Commun 2015;6:8969.Google Scholar

[73]

Low T, Avouris P. Graphene plasmonics for teraherts to mid-infrared applications. ACS Nano 2014;8:1086–101.Google Scholar

[74]

Koppens FHL, Chang DE, Garcia de Abajo FJ. Graphene plasmonics: a platform for strong light-matter interactions. Nano Lett 2011;11:3370–7.Google Scholar

[75]

Ju L, Geng B, Horng J, et al. Graphene plasmonics for tunable terahertz metamaterials. Nat Nanotech 2011;6:630–4.Google Scholar

[76]

Liu PQ, Valmorra F, Maissen C, Faist J. Electrically tunable graphene anti-dot array terahertz plasmonic crystals exhibiting multi-bad resonances. Optica 2015;2:135–40.Google Scholar

[77]

Vakil A, Engheta N. Transformation optics using graphene. Science 2011;332:1291–4.Google Scholar

[78]

Singh JGR, Liu X, Zhang X, et al. Active control of electromagnetically induced transparency analogue in terahertz metamaterials. Nat Commun 2012;3:1151.Google Scholar

[79]

Jadidi MM, Sushkov AB, Myers-Ward RL, et al. Tunable terahertz hybrid metal-graphene plasmons. Nano Lett 2015;15:7099–104.Google Scholar

[80]

Shi SF, Zeng B, Han HL, et al. Optimizing broadband terahertz modulation with hybrid graphene metasurface structures. Nano Lett 2015;15:372–7.Google Scholar

[81]

Soukoulis CM, Wegener M. Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nat Photonics 2011;5:523–30.Google Scholar

[82]

Zhou J, Chowdhury DR, Zhao R, et al. Terahertz chiral metamaterials with giant and dynamically tunable optical activity. Phys Rev B 2012;86:035448, https://doi.org/10.1103/PhysRevB.86.035448.Google Scholar

[83]

Zhang S, Zhou J, Park YS, et al. Photoinduced handedness switching in terahertz chiral metamolecules. Nat Commun 2012;3:942.Google Scholar

[84]

Kan T, Isozaki A, Kanda N, et al. Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals. Nat Commun 2015;6:8422.Google Scholar

[85]

Koenig S, Lopez-Diaz D, Antes J, et al. Wireless sub-THz communication system with high data rate. Nat Photonics 2013;7:977–81.Google Scholar

[86]

Suen JY, Fang MT, Denny SP, Lubin PM. Modeling of terabit geostationary terahertz satellite links from globally dry locations. IEEE Trans THz Sci Technol 2015;5:299–313.Google Scholar

[87]

Choudhury B, Sonde AR, Jha RM. Terahertz antenna technology for space applications. Singapore, Springer Briefs in electrical and Computer Engineering, 2016.Google Scholar

[88]

Bordács S, Kézsmárki I, Szaller D, et al. Chirality of matter shows up via spin excitations. Nat Phys 2012;8:734–8.Google Scholar

[89]

Park BC, Kim TH, Sim KI, et al. Terahertz single conductance quantum and topological phase transitions in topological insulator Bi_{2}Se_{3} ultrathin films. Nat Commun 2015;6:6552.Google Scholar

[90]

Richter H, Pavlov SG, Semenov AD, et al. Submegahertz frequency stabilization of a terahertz quantum cascade laser to a molecular absorption line. Appl Phys Lett 2010;96:071112.Google Scholar

[91]

Ren Y, Hovenier JN, Cui M, et al. Frequency locking of single-mode 3.5-THz quantum cascade lasers using a gas cell. Appl Phys Lett 2012;100:041111.Google Scholar

[92]

Ren Y, Hayton DJ, Hovenier JN, et al. Frequency and amplitude stabilized terahertz quantum cascade laser as local oscillator. Appl Phys Lett 2012;101:101111.Google Scholar

[93]

Dhillon SS, Vitiello MS, Linfield EH, et al. The 2017 terahertz science and technology roadmap. J Phys D: Appl Phys 2017;50:043001.Google Scholar