[1]

Sorger VJ, Oulton RF, Ma RM, Zhang X. Toward integrated plasmonic circuits. MRS Bull 2012;37:728–38.Google Scholar

[2]

Liu K, Ye CR, Khan S, Sorger VJ. Review and perspective on ultrafast wavelength-size electro-optic modulators. Laser Photon Rev 2015;9:172–94.Google Scholar

[3]

Liu K, Li N, Sadana DK, SorgerVJ. Integrated nanocavity plasmon light sources for on-chip optical interconnects. ACS Photonics 2016;3:233–42.Google Scholar

[4]

Theofanous NG, Aillerie M, Fontana MD, Alexakis GE. A frequency doubling electro-optic modulation system for Pockels effect measurements: application in LiNbO3. Rev Sci Instrum 1997;68:2138–43.Google Scholar

[5]

Wooten EL, Kissa KM, Yi-Yan A, et al. A review of lithium niobate modulators for fiber-optic communications systems. IEEE J Sel Topics Quantum Electron 2000;6:69–82.Google Scholar

[6]

Bar-Joseph I, Klingshirn C, Miller DAB, Chemla DS, Koren U, Miller BI. Quantum-confined Stark effect in InGaAs/InP quantum wells grown by organometallic vapor phase epitaxy. Appl Phys Lett 1987;50:1010–2.Google Scholar

[7]

Liu A, Jones R, Liao L, et al. A high-speed silicon optical modulator based on a metal–oxide–semiconductor capacitor. Nature 2004;427:615–8.Google Scholar

[8]

Xu Q, Schmidt B, Pradhan S, Lipson M. Micrometre-scale silicon electro-optic modulator. Nature 2005;435:325–7.Google Scholar

[9]

Reed GT, Mashanovich G, Gardes FY, Thomson DJ. Silicon optical modulators. Nat Photon 2010;4:518–26.Google Scholar

[10]

Ye C, Khan S, Li ZR, Simsek E, Sorger VJ. λ-Size ITO and graphene-based electro-optic modulators on SOI. IEEE J Sel Topics Quantum Electron 2014;20:40–9.Google Scholar

[11]

Feigenbaum E, Diest K, Atwater H. Unity-order index change in transparent conducting oxides at visible frequencies. Nano Lett 2010;10:2111–6.Google Scholar

[12]

Liu M, Yin X, Ulin-Avila E, et al. A graphene-based broadband optical modulator. Nature 2011;474:64–7.Google Scholar

[13]

Wang F, Zhang Y, Tian C, et al. Gate-variable optical transitions in graphene. Science 2008;320:206–9.Google Scholar

[14]

Ma Z, Tahersima M, Khan S, Sorger VJ. Two-dimensional material-based mode confinement engineering in electro-optic modulators. IEEE J Sel Topics Quantum Electron 2017;23:81–8.Google Scholar

[15]

Ye C, Liu K, Soref RA, Sorger VJ. A compact plasmonic MOS-based 2×2 electro-optic switch. Nanophotonics 2015;4:261–8.Google Scholar

[16]

Huang C, Lamond RJ, Pickus SK, Li ZR, Sorger VJ. A sub-λ-size modulator beyond the efficiency-loss limit. IEEE Photon J 2013;5:2202411.Google Scholar

[17]

Vasudev AP, Kang J, Park J, Liu X, Brongersma ML. Electro-optical modulation of a silicon waveguide with an “epsilon-near-zero” material. Opt Express 2013;21:26387–97.Google Scholar

[18]

Ye C, Li Z, Liu K, Soref R, Sorger VJ. Strong ITO index modulation for switching devices. In: Advanced Photonics for Communications, OSA Technical Digest (online) (Optical Society of America, 2014), paper JM3B.1.Google Scholar

[19]

Baek J, You JB, Yu K. Free-carrier electro-refraction modulation based on a silicon slot waveguide with ITO. Opt Express 2015;23:15863–76.Google Scholar

[20]

Shi K, Haque RR, Zhao B, Zhao R, Lu Z. Broadband electro-optical modulator based on transparent conducting oxide. Opt Lett 2014;39:4978–81.Google Scholar

[21]

Dionne J, Diest K, Sweatlock L, Atwater HA. PlasMOStor: a metal–oxide–Si field effect plasmonic modulator. Nano Lett 2009;9:897–902.Google Scholar

[22]

Lee HW, Papadakis G, Burgos SP, et al. Nanoscale conducting oxide PlasMOStor. Nano Lett 2014;14:6463−8.Google Scholar

[23]

Lafone L, Sidiropoulos TPH, Oulton RF. Silicon-based metal-loaded plasmonic waveguides for low-loss nanofocusing. Opt Lett 2014;39:4356–9.Google Scholar

[24]

Manolatou C, Lipson M. All-optical silicon modulators based on carrier injection by two-photon absorption. J Lightwave Tech 2006;24:1433–9.Google Scholar

[25]

Xu Q, Manipatruni S, Schimdt B, Shakya J, Lipson M. 125 Gbit/s carrier-injection-based silicon micro-ring silicon modulators. Opt Exp 2007;15:430–6.Google Scholar

[26]

Melikyan A, Lindenmann N, Walheim S, et al. Surface plasmon polariton absorption modulator. Opt Exp 2011;19:8855–69.Google Scholar

[27]

Ma Z, Li Z, Liu K, Ye C, Sorger V. Indium-tin-oxide for high-performance electro-optic modulation. Nanophotonics 2015;4:198–213.Google Scholar

[28]

Sorger V, Lanzillotti-Kimura N, Ma R, Zhang X. Ultra-compact silicon nanophotonic modulator with broadband response. Nanophotonics 2012;1:17–22.Google Scholar

[29]

Zhu S, Lo GQ, Kwong DL. Phase modulation in horizontal metal-insulator-silicon-insulator-metal plasmonic waveguides. Opt Exp 2013;21:8320–30.Google Scholar

[30]

Salamin Y, Heni W, Haffner C, et al. Direct conversion of free space millimeter waves to optical domain by plasmonic modulator antenna. Nano Lett 2015;15:8342–6.Google Scholar

[31]

Haffner C, Heni W, Fedoryshyn Y, et al. All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale. Nat Photonics 2015;9:525–8.Google Scholar

[32]

Soref RA, Bennett BR. Electrooptical effects in silicon. IEEE J Quantum Electron 1987;23:123–9.Google Scholar

[33]

Ansell D, Radko IP, Han Z, Rodriguez FJ, Bozhevolnyi SI, Grigorenko AN. Hybrid graphene plasmonic waveguide modulators. Nat Comm 2015;6:8846.Google Scholar

[34]

Khurgin JB. Slow light in various media: a tutorial. Adv Opt Photon 2010;2:287–318.Google Scholar

[35]

Sun S, Badawy A, Narayana V, El-Ghazawi T, Sorger V. The case for hybrid photonic plasmonic interconnects (HyPPIs): low-latency energy-and-area-efficient on-chip interconnects. IEEE Photon J 2015;7:1–14.Google Scholar

[36]

Ye Y, Wong Z, Lu X, et al. Monolayer excitonic laser. Nat Photonics 2015;9:733–7.Google Scholar

[37]

Tahersima M, Sorger V. Enhanced photon absorption in spiral nanostructured solar cells using layered 2D materials. Nanotechnology 2015;26:344005.Google Scholar

[38]

Gan X, Shiue R, Gao Y, et al. Chip-integrated ultrafast graphene photodetector with high responsivity. Nat Photonics 2013;7:883–7.Google Scholar

[39]

Li G, Krishnamoorthy A, Shubin I, et al. Ring resonator modulators in silicon for interchip photonic links. IEEE J Sel Topics Quantum Electron 2013;19:95–113.Google Scholar

[40]

Hanson G. Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene. J Appl Phys 2008;103:064302.Google Scholar

[41]

Jun YC, Briggs RM, Atwater HA, Brongersma ML. Broadband enhancement of light emission in silicon slot waveguides. Opt Exp 2009;17:7479–90.Google Scholar

[42]

Saleh A, Dionne J. Waveguides with a silver lining: low threshold gain and giant modal gain in active cylindrical and coaxial plasmonic devices. Phys Rev B 2012;85:045407.Google Scholar

[43]

Veronis G, Fan S. Modes of subwavelength plasmonic slot waveguides. J Lightwave Tech 2007;25:2511–21.Google Scholar

[44]

Soref RA. Silicon-based optoelectronics. Proc IEEE 1993;81:1687–706.Google Scholar

[45]

Soref RA, Bennett BR. Kramers-Kronig analysis of electro-optical switching in silicon. Proc SPIE 1987;704:32–7.Google Scholar

[46]

Ray S, Banerjee R, Basu N, Batabyal AK, Barua AK. Properties of tin doped indium oxide thin films prepared by magnetron sputtering. J Appl Phys 1983;54:3497.Google Scholar

[47]

Tuna O, Selamet Y, Aygun G, Ozyuzer L. High quality ITO thin films grown by dc and RF sputtering without oxygen. J Phys D Appl Phys 2010;43:055402.Google Scholar

[48]

Liu K, Sun S, Majumdar A, Sorger VJ. Fundamental scaling laws in nanophotonics. Sci Rep 2016;6:37419.Google Scholar

[49]

Nielsen MP, Lafone L, Rakovich A, et al. Adiabatic nanofocusing in hybrid gap plasmon waveguides on the silicon-on-insulator platform. Nano Lett 2016;16:1410–4.Google Scholar

[50]

Oulton RF, Sorger VJ, Genov DA, Pile DFP, Zhang X. A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nat Photonics 2008;2:496–500.Google Scholar

[51]

Almeida VR, Xu Q, Barios CA, Lipson M. Guiding and confining light in void nanostructure. Opt Lett 2004;29:1209–11.Google Scholar

[52]

Oulton RF, Bartal G, Pile DFP, Zhang X. Confinement and propagation characteristics of subwavelength plasmonic modes. New J Phys 2008;10:105018.Google Scholar

[53]

Jackson JD. Classical electrodynamics. 3rd ed. New York, John Wiley & Sons, 1999.Google Scholar

[54]

Kasap SO. Optoelectronics and photonics: principles and practices, 2nd ed. Englewood Cliffs, New Jersey, Prentice-Hall, 2013.Google Scholar

[55]

Koch TL. In: 8th IEEE International Conference on Group IV Photonics, London, 2011, 112–4.Google Scholar

[56]

Lin H, Ogbuu O, Liu J, Zhang L, Michel J, Hu J. Breaking the energy-bandwidth limit of electrooptic modulators: theory and a device proposal. J Lightwave Tech 2013;31:4029–36.Google Scholar

[57]

Sun S, Badawy A, Narayana V, El-Ghazawi T, Sorger VJ. In: Advanced Photonics 2016 (IPR, NOMA, Sensors, Networks, SPPCom, SOF), OSA technical Digest (online), paper ITu2B.6. Optical Society of America, 2016.Google Scholar

[58]

Vahala KJ. Optical microcavities. Nature 2003;424:839–46.Google Scholar

[59]

Armani DK, Kippenberg TJ, Spillane SM, Vahala KJ. Ultra-high-Q toroid microcavity on a chip. Nature 2003;421:925–8.Google Scholar

[60]

Lee H, Chen T, Li J, et al. Chemically etched ultrahigh-Q wedge-resonator on a silicon chip. Nat Photonics 2012;6:369–73.Google Scholar

[61]

Ma Z, Amin R, Khan S, Tahersima M, Sorger VJ. Temperature dependence of a sub-wavelength compact graphene plasmon-slot modulator. arXiv:1709.01465.Google Scholar

[62]

Shainline JM, Buckley SM, Mirin RP, Nam SW. Superconducting optoelectronic circuits for neuromorphic computing. Phys Rev Applied 2017;7:034013.Google Scholar