[1]

Dasgupta NP, Sun J, Liu C, et al. 25th Anniversary article: semiconductor nanowires – synthesis, characterization, and applications. Adv Mat 2014;26:2137–84.Google Scholar

[2]

Wallentin J, Anttu N, Asoli D, et al. InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit. Science 2014;339:1057–60.Google Scholar

[3]

van Dam D, van Hoof NJJ, Cui Y, et al. High-efficiency nanowire solar cells with omnidirectionally enhanced absorption due to self-aligned indium–tin–oxide mie scatterers. ACS Nano 2016;10:11414–9.Google Scholar

[4]

Cui Y, Lieber CM. Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science 2001;291:851–3.Google Scholar

[5]

Palacios T. Nanowire electronics comes of age. Nature 2012;481:152–3.Google Scholar

[6]

Hällström W, Mårtensson T, Prinz C, et al. Gallium phosphide nanowires as a substrate for cultured neurons. Nano Lett 2007;7:2960–5.Google Scholar

[7]

Patolsky F, Zheng G, Lieber CM. Nanowire sensors for medicine and the life sciences. Nanomedicine 2006;1:51–65.Google Scholar

[8]

Jacobsson D, Panciera F, Tersoff J, et al. Interface dynamics and crystal phase switching in GaAs nanowires. Nature 2016;531:317–22.Google Scholar

[9]

Borgström MT, Wallentin J, Trägårdh J, et al. In situ etching for total control over axial and radial nanowire growth. Nano Res 2010;3:264–70.Google Scholar

[10]

Heiss M, Fontana Y, Gustafsson A, et al. Self-assembled quantum dots in a nanowire system for quantum photonics. Nat Mater 2013;12:439–44.Google Scholar

[11]

Mourik V, Zuo K, Frolov SM, Plissard SR, Bakkers EPAM, Kouwenhoven LP. Signatures of majorana fermions in hybrid superconductor-semiconductor nanowire devices. Science 2012;336:1003–7.Google Scholar

[12]

Li M, Tang HX, Roukes ML. Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications. Nat Nanotech 2007;2:114–20.Google Scholar

[13]

Chen IJ, Burke A, Svilans A, Linke H, Thelander C. Thermoelectric power factor limit of a 1D nanowire. Phys Rev Lett 2018;120:177703.Google Scholar

[14]

Schmid H, Borg M, Moselund K, et al. Template-assisted selective epitaxy of III-V nanoscale devices for co-planar heterogeneous integration with Si. Appl Phys Lett 2015;106:233101.Google Scholar

[15]

Lee H-Y, Shen T-H, Hu C-Y, Tsai Y-Y, Wen C-Y. Producing atomically abrupt axial heterojunctions in silicon-germanium nanowires by thermal oxidation. Nano Lett 2017;17:7494–9.Google Scholar

[16]

Mante P-A, Stoumpos CC, Kanatzidis M-G, Yartsev A. Electron–acoustic phonon coupling in single crystal CH_{3}NH_{3}PbI_{3} perovskites revealed by coherent acoustic phonons. Nat Comm 2017;8:14398.Google Scholar

[17]

Bardeen J, Cooper LN, Schrieffer JR. Theory of superconductivity. Phys Rev 1957;108:1175–204.Google Scholar

[18]

Li D, Wu Y, Kim P, Shi L, Yang P, Majumdar A. Thermal conductivity of individual silicon nanowires. Appl Phys Lett 2003;83:2934–6.Google Scholar

[19]

Hochbaum AI, Chen R, Diaz Delgado R, et al. Enhanced thermoelectric performance of rough silicon nanowires. Nature 2007;451:163–7.Google Scholar

[20]

Boukai AI, Bunimovich Y, Tahir-Kheli J, Yu J-K, Goddard III WA, Heath JR. Silicon nanowires as efficient thermoelectric materials. Nature 2007;451:168–71.Google Scholar

[21]

Yang F, Grimsley TJ, Che S, Antonelli GA, Maris HJ, Nurmikko AV. Picosecond ultrasonic experiments with water and its application to the measurement of nanostructures. J Appl Phys 2010;107:103537.Google Scholar

[22]

Lin K-H, Chern G-W, Yu C-T, et al. Optical piezoelectric transducer for nano-ultrasonics. IEEE Trans Ultrason Ferroelectr Freq Control 2005;52:1404–14.Google Scholar

[23]

Mante P-A, Wu Y-C, Ho C-Y, Tu L-W, Sun C-K. Gigahertz coherent guided acoustic phonons in AlN/GaN nanowire superlattices. Nano Lett 2013;13:1139–44.Google Scholar

[24]

Thomsen C, Grahn HT, Maris HJ, Tauc J. Surface generation and detection of phonons by picosecond light pulses. Phys Rev B 1986;34:4129–38.Google Scholar

[25]

Visscher WM, Migliori A, T.Bell M, Reinert RA. On the normal modes of free vibration of inhomogeneous and anisotropic elastic objects. J Acoust Soc Am 1991;90:2154–62.Google Scholar

[26]

Pochhammer L. Ueber die Fortpflanzungsgeschwindigkeiten kleiner Schwingungen in einem unbegrenzten isotropen Kreiscylinder. J Reine Angew Math 1876:81:324–36.Google Scholar

[27]

Chree C. The equations of an isotropic elastic solid in polar and cylindrical coordinates, their solutions and applications. Trans Cambridge Philos Soc Math Phys Sci 1889;14:250–369.Google Scholar

[28]

Royer D, Dieulesaint E. Elastic waves in solids i: free and guided propagation; advanced texts in physics. Berlin–Heidelberg, Springer, 1999.Google Scholar

[29]

Garcia-Sanchez D, Déleglise S, Thomas J-L, Atkinson P, Lagoin C, Perrin B. Acoustic confinement in superlattice cavities. Phys Rev A 2016;94:033813.Google Scholar

[30]

Jean C, Belliard L, Cornelius TW, et al. Direct observation of gigahertz coherent guided acoustic phonons in free-standing single copper nanowires. J Phys Chem Lett 2014;5:4100–4.Google Scholar

[31]

Hladky-Hennion A-C. Finite element analysis of the propagation of acoustic waves in waveguides. J Sound Vib 1996;194: 119–36.Google Scholar

[32]

Nishiguchi N, Ando Y, Wybourne MN. Acoustic phonon modes of rectangular quantum wires. J Phys: Condens Matter 1997;9:5751–64.Google Scholar

[33]

Li G, Lamberton Jr GA, Gladden JR. Acoustic modes of finite length homogeneous and layered cylindrical shells: Single and multiwall carbon nanotubes. J Appl Phys 2008;104:033524.Google Scholar

[34]

Martínez-Gutiérrez D, Velasco VR. Acoustic waves of GaN nitride nanowires. Surf Sci 2011;605:24–31.Google Scholar

[35]

Mizuno S, Nishiguchi N. Acoustic phonon modes and dispersion relations of nanowire superlattices. J Phys: Condens Matter 2009;21:195303.Google Scholar

[36]

Iwai Y, Mizuno S. Coherent guided acoustic phonons in GaN/AlN nanowire superlattices. Jap J Appl Phys 2018;57:07LB02.Google Scholar

[37]

X Lü, Chu J. Lattice thermal conductivity in a silicon nanowire with square cross section. J Appl Phys 2006;100:014305.Google Scholar

[38]

Sarrazin E, Barraud S, Bournel A, Triozon F. Electron dynamics in silicon nanowire using a Monte-Carlo method. J Phys: Conf Series 2009;193:012126.Google Scholar

[39]

Fonoberov VA, Balandin AA. Giant enhancement of the carrier mobility in silicon nanowires with diamond coating. Nano Lett 2006;6:2442–6.Google Scholar

[40]

Ramayya EB, Vasileska D, Goodnick SM, Knezevic I. Cross-sectional dependence of electron mobility and lattice thermal conductivity in silicon nanowires. J Comp Elec 2008;7:319–23.Google Scholar

[41]

Ford AC, Kumar SB, Kapadia R, Guo J, Javey A. Observation of degenerate one-dimensional sub-bands in cylindrical inas nanowires. Nano Lett 2012;12:1340–43.Google Scholar

[42]

Benatar A, Rittel D, Yarin AL. Theoretical and experimental analysis of longitudinal wave propagation in cylindrical viscoelastic rods. J Mech Phys Sol 2003;51:1413–31.Google Scholar

[43]

Maldovan M. Phonon wave interference and thermal bandgap materials Nat Mater 2015;14:667–74.Google Scholar

[44]

Jean C, Belliard L, Becerra L, Perrin B. Backward propagating acoustic waves in single gold nanobeams. Appl Phys Lett 2015;107:193103.Google Scholar

[45]

Fang N, Xi D, Xu J, et al. Ultrasonic metamaterials with negative modulus. Nat Mater 2006;5:452–6.Google Scholar

[46]

Kargar F, Debnath B, Kakko J-P, et al. Direct observation of confined acoustic phonon polarization branches in free-standing semiconductor nanowires. Nat Comm 2016;7:13400.Google Scholar

[47]

Wolff C, Steel MJ, Eggleton BJ, Poulton CG. Stimulated Brillouin scattering in integrated photonic waveguides: forces, scattering mechanisms, and coupled-mode analysis. Phys Rev A 2015;92:013836.Google Scholar

[48]

Hayes W, Loudon R. Scattering of light by crystals. New York, Wiley, 1978.Google Scholar

[49]

Dil JG. Brillouin scattering in condensed matter. Rep Prog Phys 1982;45:285–334.Google Scholar

[50]

Mante P-A, Anttu N, Zhang W, et al. Confinement effects on Brillouin scattering in semiconductor nanowire photonic crystal. Phys Rev B 2016;94:024115.Google Scholar

[51]

Rakich PT, Reinke C, Camacho R, Davids P, Wang Z. Giant enhancement of stimulated brillouin scattering in the subwavelength limit. Phys Rev X 2012;2:011008.Google Scholar

[52]

Anttu N, Xu HQ. Efficient light management in vertical nanowire arrays for photovoltaics. Opt Exp 2013;21:A558–75.Google Scholar

[53]

Wang B, Leu P. Tunable and selective resonant absorption in vertical nanowires. Opt Lett 2012;37:3756–8.Google Scholar

[54]

Chiao RY, Townes CH, Stoicheff BP. Stimulated brillouin scattering and coherent generation of intense hypersonic waves. Phys Rev Lett 1964;12:592–5.Google Scholar

[55]

Keiser G. Optical fiber communications. In: Proakis JG, ed. Wiley encyclopedia of telecommunications, 2003.Google Scholar

[56]

Dainese P, Russell PJ, Joly N, et al. Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres. Nat Phys 2006;2:388–92.Google Scholar

[57]

Kim J, Kuzyk MC, Han K, Wang H, Bahl G. Non-reciprocal Brillouin scattering induced transparency. Nat Phys 2015;11:275–80.Google Scholar

[58]

Bahl G, Tomes M, Marquardt F, Carmon T. Observation of spontaneous Brillouin cooling. Nat Phys 2012;8:203–7.Google Scholar

[59]

Van Laer R, Kuyken B, Van Thourhout D, Baets R. Interaction between light and highly confined hypersound in a silicon photonic nanowire. Nat Photon 2015;9:199–203.Google Scholar

[60]

Chen Y-C, Kim S, Bahl G. Brillouin cooling in a linear waveguide. New J Phys 2016;18:115004.Google Scholar

[61]

Shin H, Qiu W, Jarecki R, et al. Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides. Nat Comm 2013;4:1944.Google Scholar

[62]

Merklein M, Stiller B, Vu K, Madden SJ, Eggleton BJ. A chip-integrated coherent photonic-phononic memory. Nat Comm 2017;8:574.Google Scholar

[63]

Johnson WL, Kim SA, Geiss R, Flannery CM, Bertness KA, Heyliger PR. Vibrational modes of GaN nanowires in the gigahertz range. Nanotechnology 2012;23:495709.Google Scholar

[64]

Ruello P, Gusev VE. Physical mechanisms of coherent acoustic phonons generation by ultrafast laser action. Ultrasonics 2015;56:21–35.Google Scholar

[65]

Mante P-A, Huang Y-R, Yang S-C, et al. THz acoustic phonon spectroscopy and nanoscopy by using piezoelectric semiconductor heterostructures. Ultrasonics 2015;56:52–65.Google Scholar

[66]

Tanaka H, Sonehara T, Takagi S. A new phase-coherent light scattering method: first observation of complex brillouin spectra. Phys Rev Lett 1997;79:881–4.Google Scholar

[67]

Pezeril T, Ruello P, Gougeon S, et al. Generation and detection of plane coherent shear picosecond acoustic pulses by lasers: Experiment and theory. Phys Rev B 2007;75:174307.Google Scholar

[68]

Devos A, Côte R. Strong oscillations detected by picosecond ultrasonics in silicon: Evidence for an electronic-structure effect. Phys Rev B 2004;70:125208.Google Scholar

[69]

Devos A, Le Louarn A. Strong effect of interband transitions in the picosecond ultrasonics response of metallic thin films. Phys Rev B 2003;68:045405.Google Scholar

[70]

Maris H. Animating human motion. Sci Am 1998;278:64–9.Google Scholar

[71]

Sun C-K, Liang J-C, Yu X-Y. Coherent acoustic phonon oscillations in semiconductor multiple quantum wells with piezoelectric fields. Phys Rev Lett 2000;84:179–82.Google Scholar

[72]

Huynh A, Perrin B, Jusserand B, Lemaître A. Terahertz coherent acoustic experiments with semiconductor superlattices. Appl Phys Lett 2011;99:191908.Google Scholar

[73]

Mante P-A, Devos A, Le Louarn A. Generation of terahertz acoustic waves in semiconductor quantum dots using femtosecond laser pulses. Phys Rev B 2010;81:113305.Google Scholar

[74]

Lejman M, Vaudel G, Infante IC, et al. Ultrafast acousto-optic mode conversion in optically birefringent ferroelectrics. Nat Comm 2016;7:12345.Google Scholar

[75]

Hu M, Wang X, Hartland GV, Mulvaney P, Perez Juste J, Sader JE. Vibrational response of nanorods to ultrafast laser induced heating: theoretical and experimental analysis. J Am Chem Soc 2003;125:14925–33.Google Scholar

[76]

Crut A, Maioli P, Del Fatti N, Vallée F. Acoustic vibrations of metal nano-objects: time-domain investigations Phys Rep 2014;549:1–43.Google Scholar

[77]

Jerebtsov SN, Kolomenskii AA, Liu H, et al. Laser-excited acoustic oscillations in silver and bismuth nanowires. Phys Rev B 2007;76:184301.Google Scholar

[78]

Kolomenskii AA, Jerebtsov SN, Liu H, et al. Observation of coherent acoustic and optical phonons in bismuth nanowires by a femtosecond pump-probe technique. J Appl Phys 2008;104:103110.Google Scholar

[79]

Sakuma H, Tomoda M, Otsuka PH, et al. Vibrational modes of GaAs hexagonal nanopillar arrays studied with ultrashort optical pulses. Appl Phys Lett 2012;100:131902.Google Scholar

[80]

Chen H-P, Wu Y-C, Mante P-A, Tu S-J, Sheu J-K, Sun C-K. Femtosecond excitation of radial breathing mode in 2-D arrayed GaN nanorods. Opt Exp 2012;20:16611–7.Google Scholar

[81]

Mante P-A, Ho C-Y, Tu L-W, Sun C-K. Interferometric detection of extensional modes of GaN nanorods array. Opt Exp 2012;20:18717–22.Google Scholar

[82]

Mariager SO, Khakhulin D, Lemke HT, et al. Direct observation of acoustic oscillations in InAs nanowires. Nano Lett 2010;10:2461–5.Google Scholar

[83]

Yang S-C, Wu Y-C, Mante P-A, et al. Efficient excitation of guided acoustic waves in semiconductor nanorods through external metallic acoustic transducer. Appl Phys Lett 2014;105:243101.Google Scholar

[84]

Yang S-C, Wei P-K, Hsiao H-H, et al. Enhanced detection sensitivity of higher-order vibrational modes of gold nanodisks on top of a GaN nanorod array through localized surface plasmons. Appl Phys Lett 2014;105:211103.Google Scholar

[85]

Mante P-A, Lehmann S, Anttu N, Dick KA, Yartsev A. Nondestructive complete mechanical characterization of zinc blende and wurtzite GaAs nanowires using time-resolved pump-probe spectroscopy. Nano Lett 2016;16:4792–8.Google Scholar

[86]

Jurgilaitis A, Enquist H, Andreasson BP, et al. Time-resolved X-ray diffraction investigation of the modified phonon dispersion in InSb nanowires. Nano Lett 2014;14:541–6.Google Scholar

[87]

Arbouet A, Christofilos D, Del Fatti N, et al. Direct measurement of the single-metal-cluster optical absorption. Phys Rev Lett 2004;93:127401.Google Scholar

[88]

Richter G, Hillerich K, Gianola DS, Mnig R, Kraft O, Volkert CA. Ultrahigh strength single crystalline nanowhiskers grown by physical vapor deposition. Nano Lett 2009;9:3048–52.Google Scholar

[89]

Korte KE, Skrabalak SE, Xia YN. Rapid synthesis of silver nanowires through a CuCl- or CuCl2-mediated polyol process. J Mater Chem 2008;18:437–41.Google Scholar

[90]

Toimil Molares ME, Buschmann V, Dobrev D, et al. Single-crystalline copper nanowires produced by electrochemical deposition in polymeric ion track membranes. Adv Mater 2001;13:62–5.Google Scholar

[91]

Van Dijk MA, Lippitz M, Orrit M. Detection of acoustic oscillations of single gold nanospheres by time-resolved interferometry. Phys Rev Lett 2005;95:267406.Google Scholar

[92]

Burgin J, Langot P, Del Fatti N, Vallée F, Huang W, El-Sayed MA. Time-resolved investigation of the acoustic vibration of a single gold nanoprism pair. J Phys Chem C 2008;112:11231–5.Google Scholar

[93]

Staleva H, Hartland GV. Vibrational dynamics of silver nanocubes and nanowires studied by single-particle transient absorption spectroscopy. Adv Funct Mater 2008;18:3809–17.Google Scholar

[94]

Marty R, Arbouet A, Girard C, et al. Damping of the acoustic vibrations of individual gold nanoparticles. Nano Lett 2011;11:3301–6.Google Scholar

[95]

Kelf TA, Tanaka Y, Matsuda O, Larsson EM, Sutherland DS, Wright OB. Ultrafast vibrations of gold nanorings. Nano Lett 2011;11:3893–8.Google Scholar

[96]

Staleva H, Hartland GV. Transient absorption studies of single silver nanocubes. J Phys Chem C 2008;112:7535–9.Google Scholar

[97]

Zijlstra P, Tchebotareva AL, Chon JWM, Gu M, Orrit M. Acoustic oscillations and elastic moduli of single gold nanorods. Nano Lett 2008;8:3493–7.Google Scholar

[98]

Jais PM, Murray DB, Merlin R, Bragas AV. Metal nanoparticle ensembles: tunable laser pulses distinguish monomer from dimer vibrations. Nano Lett 2011;11:3685–9.Google Scholar

[99]

Juvé V, Crut A, Maioli P, et al. Probing elasticity at the nanoscale: terahertz acoustic vibration of small metal nanoparticles. Nano Lett 2010;10:1853–8.Google Scholar

[100]

Vertikov A, Kuball M, Nurmikko AV, Maris HJ. Time-resolved pump-probe experiments with subwavelength lateral resolution. Appl Phys Lett 1996;69:2465–7.Google Scholar

[101]

Siry P, Belliard L, Perrin B. Picosecond acoustics with very high lateral resolution. Acta Acust Acust 2003;89:925–9.Google Scholar

[102]

Bainier C, Vannier C, Courjon D, et al. Comparison of test images obtained from various configurations of scanning near-field optical microscopes. Appl Opt 2003;42:691.Google Scholar

[103]

Bienville T, Robillard JF, Belliard L, Roch-Jeune I, Devos A, Perrin B. Individual and collective vibrational modes of nanostructures studied by picosecond ultrasonics. Ultrasonics 2006;44:e1289–94.Google Scholar

[104]

Guillet Y, Audoin B, Ferrié M, Ravaine S. All-optical ultrafast spectroscopy of a single nanoparticle-substrate contact. Phys Rev B 2012;86:035456.Google Scholar

[105]

Guillet Y, Rossignol C, Audoin B, Calbris G, Ravaine S. Optoacoustic response of a single submicronic gold particle revealed by the picosecond ultrasonics technique. Appl Phys Lett 2009;95:061909.Google Scholar

[106]

Hu M, Wang X, Hartland GV, Mulvaney P, Juste JP, Sader JE. Vibrational response of nanorods to ultrafast laser induced heating: theoretical and experimental analysis. J Am Chem Soc 2003;125:14925–33.Google Scholar

[107]

Voisin C, Christofilos D, Del Fatti N, Vallée F. Environment effect on the acoustic vibration of metal nanoparticles. Phys B Condens Matter 2002;316–317:89–94.Google Scholar

[108]

Decremps F, Belliard L, Gauthier M, Perrin B. Equation of state, stability, anisotropy and nonlinear elasticity of diamond-cubic (ZB) silicon by phonon imaging at high pressure. Phys Rev B 2010;82:104119.Google Scholar

[109]

Belliard L, Cornelius TW, Perrin B, et al. Vibrational response of free standing single copper nanowire through transient reflectivity microscopy. J Appl Phys 2013;114:193509.Google Scholar

[110]

Liang HY, Upmanyu M, Huang HC. Size-dependent elasticity of nanowires: nonlinear effects. Phys Rev B 2005;71:241403.Google Scholar

[111]

Petrova H, Pérez-Juste J, Zhang ZY, Zhang J, Kosel T, Hartland GVJ. Crystal structure dependence of the elastic constants of gold nanorods. Mater Chem 2006;16:3957–63.Google Scholar

[112]

Major TA, Crut A, Gao B, et al. Damping of the acoustic vibrations of a suspended gold nanowire in air and water environments. Phys Chem Chem Phys 2013;15:4169–76.Google Scholar

[113]

Devkota T, Chakraborty D, Yu K, Beane G, Sader JE, Hartland GV. On the measurement of relaxation times of acoustic vibrations in metal nanowires. Phys Chem Chem Phys 2018;20:17687–93.Google Scholar

[114]

Lin K-H, Yu C-T, Sun S-Z, et al. Two-dimensional nanoultrasonic imaging by using acoustic nanowaves. Appl Phys Lett 2006;89:043106.Google Scholar

[115]

Amziane A, Belliard L, Decremps F, Perrin B. Ultrafast acoustic resonance spectroscopy of gold nanostructures: towards a generation of tunable transverse waves. Phys Rev B 2011;83:014102.Google Scholar

[116]

Jean C, Belliard L, Cornelius TW, et al. Spatiotemporal imaging of the acoustic field emitted by a single copper nanowire. Nano Lett 2016;16:6592–8.Google Scholar