[1]

H Dai., J.H Hafner., A.G. Rinzler, D.T. Colbert, R.E. Smalley (1996) Nanotubes as nanoprobes in scanning probe microscopy. Nature, Vol-384, Issue -6605, p. 147-150.Google Scholar

[2]

H. Peng, C. Chang, S. Aloni, T. Yuzvinsky, A. Zettl (2006) Ultrahigh frequency nanotube resonators. Phys. Rev. Lett., Vol- 97, Issue- 8, p. 087203(1-4).Google Scholar

[3]

A. Dubey, G. Sharma, C. Mavroidis, M. Tomassone, K. Nikitczuk, M. Yarmush (2004) Computational studies of viral protein nanoactuators. J. Comput. Theor. Nanosci., Vol- 1, Issue- 1, p. 18-28.Google Scholar

[4]

F Tornabene, N Fantuzzi, M Bacciocchi, E Viola (2016) Effect of agglomeration on the natural frequencies of functionally graded carbon nanotube-reinforced laminated composite doubly-curved shells, Composites Part B, Volume 89, p.187-218.Google Scholar

[5]

N Fantuzzi, F Tornabene, M Bacciocchi, R Dimitri (2017)Free vibration analysis of arbitrarily shaped Functionally Graded Carbon Nanotube-reinforced plates, Composites Part B, Vol-115, p. 384-408.Google Scholar

[6]

F Tornabene, N Fantuzzi, M Bacciocchi (2017) Linear static response of nanocomposite plates and shells reinforced by agglomerated carbon nanotubes, Composites Part B Vol-115, p. 449-476.Google Scholar

[7]

D Banić, M Bacciocchi, F Tornabene, A. J. M. Ferreira (2017) Influence of Winkler-Pasternak Foundation on the Vibrational Behavior of Plates and Shells Reinforced by Agglomerated Carbon Nanotubes, Applied Sciences, Vol-7, p. 1-55.Google Scholar

[8]

J. Seidi and S. Kamarian (2017) Free vibrations of non-uniform CNT/fiber/polymer nanocomposite beams, Curved and Layered Structures, Vol-4, p. 21-30.Google Scholar

[9]

S G Chavan, A Lal (2017) Bending analysis of laminated SWCNT Reinforced functionally graded plate Using FEM, Curved and Layered Structures, Vol-4, p. 134-145.Google Scholar

[10]

R Zhong, Q Wang, J Tang, C Shuai, Q Liang (2018)Vibration characteristics of functionally graded carbon nanotube reinforced composite rectangular plates on Pasternak foundation with arbitrary boundary conditions and internal line supports, Curved and Layered Structures, Vol-5, p. 10-34.Google Scholar

[11]

F Pang, H Li, Y Du, Y Shan, F Ji (2018) Free vibration of functionally graded carbon nanotube reinforced composite annular sector plate with general boundary supports, Curved and Layered Structures, Vol-5, p. 49-67.Google Scholar

[12]

A.C Eringen (1972) Nonlocal polar elastic continua. Internat. J. Engrg. Sci., Vol- 10, Issue- 1, p. 1-16.Google Scholar

[13]

L. Huang, Q. Han, Y. Liang (2012) Calibration of nonlocal scale effect parameter for bending single-layered graphene sheet under molecular dynamics, Nano, Vol- 7, Issue- 05, p.1-8.Google Scholar

[14]

W. Duan, C.M. Wang, Y. Zhang (2007) Calibration of nonlocal scaling effect parameter for free vibration of carbon nanotubes by molecular dynamics, J. Appl. Phys., Vol-101, Issue-2, p. 024305(1-7).Google Scholar

[15]

M. Xu (2006) Free transverse vibrations of nano-to-micron scale beams, Proc. R. Soc. A: Math. Phys. Eng. Sci., Vol-462, Issue-2074, p. 2977-2995.Google Scholar

[16]

J. Peddieson, G.R. Buchanan, R.P. McNitt (2003) Application of nonlocal continuum models to nanotechnology, Internat. J. Engrg. Sci., Vol- 41, Issue-3, p. 305-312.Google Scholar

[17]

P. Lu, H. Lee, C. Lu, P. Zhang (2006) Dynamic properties of flexural beams using a nonlocal elasticity model, J. Appl. Phys., Vol-99, Issue-7, 2006, p. 073510(1-9).Google Scholar

[18]

C. Wang, Y. Zhang, X. He (2007) Vibration of nonlocal Timoshenko beams, Nanotechnology, Vol-18, Issue-10, p. 105401(1-9).Google Scholar

[19]

J. Reddy (2007) Nonlocal theories for bending, buckling and vibration of beams, Internat. J. Engrg. Sci., Vol-45, Issue- 2, p. 288-307.Google Scholar

[20]

M. Aydogdu (2009) A general nonlocal beam theory: its application to nanobeam bending, buckling and vibration, Physica E, Vol- 41, Issue -9, p. 1651-1655.Google Scholar

[21]

C. Roque, A. Ferreira, J. Reddy (2011) Analysis of Timoshenko nanobeams with a nonlocal formulation and meshless method, Internat. J. Engrg. Sci., Vol-49, Issue-9, p. 976-984.Google Scholar

[22]

S. Pradhan, T. Murmu (2010) Application of nonlocal elasticity and dqm in the flapwise bending vibration of a rotating nanocantilever, Physica E, Vol- 42, Issue-7, p. 1944-1949.Google Scholar

[23]

T. Murmu, S. Pradhan (2009) Small-scale effect on the vibration of nonuniform nanocantilever based on nonlocal elasticity theory, Physica E, Vol-41, Issue-8, p. 1451-1456.Google Scholar

[24]

L. Behera, S. Chakraverty (2015) Application of Differential Quadrature method in free vibration analysis of nanobeams based on various nonlocal theories, Computers & Mathematics with Applications, Vol-69, Issue-12, Elsevier, p.1444-1462Google Scholar

[25]

S. Chakraverty, L. Behera (2016) Static and Dynamic problems of nanobeams and nanoplates,First edition, World Scientific Publishing Co.,Singapore..Google Scholar

[26]

F Tornabene, N Fantuzzi, F Ubertini, E Viola(2015)Strong Formulation Finite Element Method Based on Differential Quadrature: A Survey, Appl. Mech. Rev, Vol- 67, Issue-2, p. 020801 (1-55).Google Scholar

[27]

F Tornabene, N Fantuzzi, M Bacciocchi(2018)Refined Shear Deformation Theories for Laminated Composite Arches and Beams with Variable Thickness: Natural Frequency Analysis, Engineering Analysis with Boundary Elements, DOI10.1016/j.enganabound. 2017.07.029.Google Scholar

[28]

B. Mohammadi, S. Ghannadpour (2011) Energy approach vibration analysis of nonlocal Timoshenko beam theory, Procedia Eng., Vol-10, pp. 1766-1771.Google Scholar

[29]

L. Behera, S. Chakraverty (2014) Free vibration of Euler and Timoshenko nanobeams using boundary characteristic orthogonal polynomials, Appl. Nanosci., Vol-4, Issue-3, p. 347-358.Google Scholar

[30]

M.A. Eltaher, Amal E. Alshorbagy, F.F. Mahmoud (2013) Vibration analysis of Euler-Bernoulli nanobeams by using finite element method, Applied Mathematical Modelling, Vol-37, Issue-7, p.4787-4797.Google Scholar

[31]

R. Bellman, J. Casti (1971) Differential quadrature and long-term integration, J. Math. Anal. Appl., Vol- 34, Issue-2, p. 235-238.Google Scholar

[32]

C.W. Bert, S.K. Jang, A.G. Striz (1988) Two new approximate methods for analyzing free vibration of structural components, AIAA J., Vol- 26, Issue -5, p. 612–618.Google Scholar

[33]

S.K. Jang, C.W. Bert, A.G. Striz, (1989) Application of differential quadrature to static analysis of structural components, Internat. J. Numer. Methods Engrg., Vol-28, Issue -3, p. 561–577.Google Scholar

[34]

C. Shu (2000) Differential Quadrature and its Application in Engineering, Springer.Google Scholar

[35]

X. Wang, C. Bert (1993) A new approach in applying differential quadrature to static and free vibrational analyses of beams and plates, J. Sound Vib., Vol- 162, Issue -3, p. 566–572.Google Scholar

[36]

C. Bert, X. Wang, A. Striz (1994) Static and free vibrational analysis of beams and plates by differential quadrature method, Acta Mech., Vol-102, Issue -1, p. 11–24.Google Scholar

[37]

X. Wang, C. Bert, A. Striz, (1993) Differential quadrature analysis of deflection, buckling, and free vibration of beams and rectangular plates, Comput. & Structures, Vol- 48, Issue- 3, p. 473–479.Google Scholar

[38]

C.W. Bert, W. Xinwei, A.G. (1993) Striz, Differential quadrature for static and free vibration analyses of anisotropic plates, Internat. J. Solids Structures, Vol- 30, Issue-13, p. 1737–1744.Google Scholar

[39]

C.W. Bert, M. Malik, (1996) The differential quadrature method for irregular domains and application to plate vibration, Int. J. Mech. Sci., Vol- 38, Issue- 6, p. 589–606.Google Scholar

[40]

J. Quan, C. Chang (1989) New insights in solving distributed system equations by the quadrature method—I. Analysis, Comput. Chem. Eng., Vol-13, Issue- 7, p. 779–788.Google Scholar

[41]

T Murmu, S Adhikari (2010) Nonlocal transverse vibration of double-nanobeam-systems, Journal of Applied Physics, Vol-108, p.083514 (1-9).Google Scholar