1.
Wisniewski N, Klitzman B, Miller B, Reichert WM. Decreased analyte transport through implanted membranes: differentiation of biofouling from tissue effects. J Biomed Mater Res. 2001;57:513–21.Google Scholar
2.
Ratner BD, Bryant SJ. Biomaterials: where we have been and where we are going. Annu Rev Biomed Eng. 2004;6:41–75.Google Scholar
3.
John LB, Thomas AH. Proteins at interfaces: an overview. Am Chem Soc. 1995;602:1–23.Google Scholar
4.
An YH, Friedman RJ. Concise review of mechanisms of bacterial adhesion to biomaterial surfaces. J Biomed Mater Res. 1998;43:338–48.Google Scholar
5.
Jeon SI, Lee JH, Andrade JD, De Gennes PG. Protein-surface interactions in the presence of polyethylene oxide: I. Simplified theory. J Colloid Interf Sci. 1991;142:149–58.Google Scholar
6.
Kenausis GL, Vörös J, Elbert DL, Huang N, Hofer R, Ruiz-Taylor L. Poly (L-lysine)-g-poly (ethylene glycol) layers on metal oxide surfaces: attachment mechanism and effects of polymer architecture on resistance to protein adsorption. J Phys Chem B. 2000;104:3298–309.Google Scholar
7.
Dalsin JL, Lin L, Tosatti S, Vörös J, Textor M, Messersmith PB. Protein resistance of titanium oxide surfaces modified by biologically inspired mPEG-DOPA. Langmuir. 2005;21:640–6.Google Scholar
8.
Damodaran VB, Murthy NS. Bio-inspired strategies for designing antifouling biomaterials. Biomater Res. 2016;20:18.Google Scholar
9.
Fletcher M. Bacterial biofilms and biofouling. Curr Opin Biotechnol. 1994;5:302–6.Google Scholar
10.
Hall-Stoodley L, Costerton JW, Stoodley P. Bacterial biofilms: from the natural environment to infectious disease. Nat Rev Microbiol. 2004;2:95–108.Google Scholar
11.
Flemming HC, Wingender J. The biofilm matrix. Nat Rev Microbiol. 2010;8:623–33.Google Scholar
12.
Rodriguez-Martinez JM, Pascual A. Antimicrobial resistance in bacterial biofilms. Rev Med Microbiol. 2006;17:65–75.Google Scholar
13.
Van Oss CJ. Polar or Lewis acid-base interactions. Interfacial forces in aqueous media. New York: Marcel Dekker, 1994:18–46.Google Scholar
14.
Tchesnokova V, Aprikian P, Kisiela D, Gowey S, Korotkova N, Thomas W, et al. Type 1 fimbrial adhesin FimH elicits and immune response that enhances cell adhesion of Eschericia coli. Infect Immun. 2011;79:3895–904.Google Scholar
15.
Gao P, Nie X, Zou M, Shi Y, Cheng G. Recent advances in materials for extended-release antibiotic delivery system. J Antibiot. 2011;64:625–34.Google Scholar
16.
Pierschbacher MD, Ruoslahti E. Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature. 1984;306:30.Google Scholar
17.
Maheshwari G, Brown G, Lauffenburger DA, Wells A, Griffith LG. Cell adhesion and motility depend on nanoscale RGD clustering. J Cell Sci. 2000;113:1677–86.Google Scholar
18.
Lind G, Linsmeier CE, Schouenborg J. The density difference between tissue and neural probes is a key factor for glial scarring. Sci Rep. 2013;3:2942.Google Scholar
19.
Minami E, Koh IH, Ferreira JC, Waitzberg AF, Chifferi V, Rosewick TF, et al. The composition and behavior of capsules around smooth and textured breast implants in pigs. Plast Reconstr Surg. 2006;118:874–84.Google Scholar
20.
Balderrama CM, Ribas-Filho JM, Malafaia O, Czeczko NG, Dietz UA, Sakamoto DG, et al. Healing reaction to mammary prostheses covered by textured silicone and silicone foam in rats. Acta Cirurgica Brasileira. 2009;24:367–76.Google Scholar
21.
Biggs MJ, Richards RG, Dalby MJ. Nanotopographical modification: a regulator of cellular function through focal adhesions. Nanomedicine. 2010;6:619–33.Google Scholar
22.
Di Cio S, Gautrot JE. Cell sensing of physical properties at the nanoscale: mechanisms and control of cell adhesion and phenotype. Acta Biomater. 2016;30:26–48.Google Scholar
23.
Tsai W-B, Chen Y-H, Chien H-W. Collaborative cell-resistant properties of polyelectrolyte multilayer films and surface PEGylation on reducing cell adhesion to cytophilic surfaces. J Biomat Sci Polymer E. 2009;20:1611–28.Google Scholar
24.
Decher G. Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science. 1997;277:1232–7.Google Scholar
25.
Peyratout CS, Daehne L. Tailor-made polyelectrolyte microcapsules: from multilayers to smart containers. Angew Chem Int Ed. 2004;43:3762–83.Google Scholar
26.
Picart C. Polyelectrolyte multilayer films: from physico-chemical properties to the control of cellular processes. Curr Med Chem. 2008;15:685–97.Google Scholar
27.
Tristán F, Palestino G, Menchaca JL, Pérez E, Atmani H, Cuisinier F. Tunable protein-resistance of polycation-terminated polyelectrolyte multilayers. Biomacromolecules. 2009;10:2275–83.Google Scholar
28.
Wu B, Liu G, Zhang G, Craig VS. Stiff chains inhibit and flexible chains promote protein adsorption to polyelectrolyte multilayers. Soft Matter. 2014;10:3806–16.Google Scholar
29.
Andreeva TD, Hartmann H, Tanevaa SG, Krastev R. Regulation of the growth, morphology, mechanical properties and biocompatibility of natural polysaccharide-based multilayers by Hofmeister anions. J Mater Chem B. 2016;4:7092–100.Google Scholar
30.
Chuang HF, Smith RC, Hammond PT. Polyelectrolyte multilayers for tunable release of antibiotics. Biomacromolecules. 2008;9:1660–8.Google Scholar
31.
Bereket W, Hemalatha K, Getenet B, Wondwossen T, Solomon A, Zeynudin A, et al. Update on bacterial nosocomial infections. Eur Rev Med Pharmacol Sci. 2012;16:1039–44.Google Scholar
32.
Foster TJ, Geoghegan JA, Ganesh VK, Höök M. Adhesion, invasion andevasion: the many functions of the surface proteins of Staphylococcus aureus. Nat Rev Microbiol. 2014;12:49–62.Google Scholar
33.
Loveday H, Wilson J, Kerr K, Pitchers R, Walker J, Browne J. Association between healthcare water systems and Pseudomonas aeruginosa infections: arapid systematic review. J Hosp Infect. 2014;86:7–15.Google Scholar
34.
Vinh DC, Embil JM. Device-related infections: a review. J Long Term Eff Med Implants. 2005;15:467–88.Google Scholar
35.
Seth AK, Geringer MR, Hong SJ, Leung KP, Mustoe TA, Galiano RD. In vivo modeling of biofilm-infected wounds: a review. J Surg Res. 2012;178:330–8.Google Scholar
36.
Percival SL, Hill KE, Williams DW, Hooper SJ, Thomas DW, Costerton JW. A review of the scientific evidence for biofilms in wounds. Wound Repair Regen. 2012;20:647–57.Google Scholar
37.
von Eiff C, Heilmann C, Peters G. New aspects in the molecular basis of polymer-associated infections due to staphylococci. Eur J Clin Microbiol Infect Dis. 1999;18:843–846.Google Scholar
38.
von Eiff C, Jansen B, Kohnen W, Becker K. Infections associated with medical devices. Drugs. 2005;65:179–214.Google Scholar
39.
Donlan RM. Biofilms on central venous catheters: is eradication possible?. Curr Top Microbiol Immunol. 2008;322:133–61.Google Scholar
40.
Zhu X, Loh XJ. Layer-by-layer assemblies for antibacterial applications. Biomater Sci. 2015;3:1505–18.Google Scholar
41.
Campoccia D, Montanaro L, Arciola CR. A review of the biomaterials technologies for infection-resistant surfaces. Biomaterials. 2013;34:8533e5.Google Scholar
42.
Schmolke H, Demming S, Edlich A, Magdanz V, Büttgenbach S, Franco-Lara E, et al. Polyelectrolyte multilayer surface functionalization of poly (dimethylsiloxane) (PDMS) for reduction of yeast cell adhesion in microfluidic devices. Biomicrofluidics. 2010;4:044113.Google Scholar
43.
Mi L, Jiang S. Integrated antimicrobial and nonfouling zwitterionic polymers. Angew Chem Int Ed. 2014;53:1746–54.Google Scholar
44.
Schlenoff JB. Zwitteration: coating surfaces with zwitterionic functionality to reduce nonspecific adsorption. Langmuir. 2014;30:9625–36.Google Scholar
45.
Yuan J, Mao C, Zhou J, Fang J-L. Chemical grafting of sulfobetaine onto poly (ether urethane) surface for improving blood compatibility. Polymer International. 2003;52:1869–75.Google Scholar
46.
Sun J-T, Yu ZQ, Hong CY, Pan CY. Biocompatible zwitterionic sulfobetaine copolymer-coated mesoporous silica nanoparticles for temperature-responsive drug release. Macromol Rapid Comm. 2012;33:811–8.Google Scholar
47.
Zhang L, Cao Z, Bai T, Carr L, Ella-Menye JR, Irvin C, et al. Zwitterionic hydrogels implanted in mice resist the foreign-body reaction. Nat Biotechnol. 2013;31:553–6.Google Scholar
48.
Olenych SG, Moussallem MD, Salloum DS, Schlenoff JB, Keller TC. Fibronectin and cell attachment to cell and protein resistant polyelectrolyte surfaces. Biomacromolecules. 2005;6:3252–8.Google Scholar
49.
Chien H-W, Tsai CC, Tsai WB, Wang MJ, Kuo WH, Wei TC, et al. Surface conjugation of zwitterionic polymers to inhibit cell adhesion and protein adsorption. Colloids Surf B Biointerfaces. 2013;107:152–9.Google Scholar
50.
Cheng G, Zhang Z, Chen S, Bryers JD, Jiang S. Inhibition of bacterial adhesion and biofilm formation on zwitterionic surfaces. Biomaterials. 2007;28:4192–9.Google Scholar
51.
Martinez JS, Kelly KD, Ghoussoub YE, Delgado JD, Keller Iii TC, Schlenoff JB. Cell resistant zwitterionic polyelectrolyte coating promotes bacterial attachment: an adhesion contradiction. Biomater Sci. 2016;4:689–98.Google Scholar
52.
Genzer J, Efimenko K. Recent developments in superhydrophobic surfaces and their relevance to marine fouling: a review. Biofouling. 2006;22:339e60.Google Scholar
53.
Zhang X, Shi F, Yu X, Liu H, Fu Y, Wang Z, et al. Polyelectrolyte multilayer as matrix for electrochemical deposition of gold clusters: toward super-hydrophobic surface. J Am Chem Soc. 2004;126:3064–5.Google Scholar
54.
Marmur A. Wetting on hydrophobic rough surfaces: to be heterogeneous or not to be?. Langmuir. 2003;19:8343–8.Google Scholar
55.
Song F, Koo H, Ren D. Effects of material properties on bacterial adhesion and biofilm formation. J Dent Res. 2015;94:1027–34.Google Scholar
56.
Fu J, Ji J, Yuan W, Shen J. Construction of anti-adhesive and antibacterial multilayer films via layer-by-layer assembly of heparin and chitosan. Biomaterials. 2005;26:6684–92.Google Scholar
57.
Lichter JA, Rubner MF. Polyelectrolyte multilayers with intrinsic antimicrobial functionality: the importance of mobile polycations. Langmuir. 2009;25:7686–94.Google Scholar
58.
Song F, Ren D. Stiffness of cross-linked poly (dimethylsiloxane) affects bacterial adhesion and antibiotic susceptibility of attached cells. Langmuir. 2014;30:10354–62.Google Scholar
59.
Lichter JA, Thompson MT, Delgadillo M, Nishikawa T, Rubner MF, Van Vliet KJ. Substrata mechanical stiffness can regulate adhesion of viable bacteria. Biomacromolecules. 2008;9:1571–8.Google Scholar
60.
Saha N, Monge C, Dulong V, Picart C, Glinel K. Influence of polyelectrolyte film stiffness on bacterial growth. Biomacromolecules. 2013;14:520–8.Google Scholar
61.
Hetrick EM, Schoenfisch MH. Reducing implant-related infections: active release strategies. Chem Soc Rev. 2006;35:780–9.Google Scholar
62.
Deacon J, Abdelghany SM, Quinn DJ, Schmid D, Megaw J, Donnelly RF, et al. Antimicrobial efficacy of tobramycin polymeric nanoparticles for Pseudomonas aeruginosa infections in cystic fibrosis: Formulation, characterisation and functionalisation with dornase alfa (DNase). J Control Release. 2015;198:55–61.Google Scholar
63.
Diaz-Rodriguez P, Landin M, Rey-Rico A, Couceiro J, Coenye T, González P, et al. Bio-inspired porous SiC ceramics loaded with vancomycin for preventing MRSA infections. J Mater Sci Mater Med. 2011;22:339–47.Google Scholar
64.
Zhuk I, Jariwala F, Attygalle AB, Wu Y, Libera MR, Sukhishvili SA. Self-defensive layer-by-layer films with bacteria-triggered antibiotic release. ACS Nano. 2014;8:7733–45.Google Scholar
65.
Wang B, Jin T, Xu Q, Liu H, Ye Z, Chen H. Direct loading and tuneable release of antibiotics from polyelectrolyte multilayers to reduce bacterial adhesion and biofilm formation. Bioconjug Chem. 2016;27:1305–13.Google Scholar
66.
Russell AD, Hugo WB. Antimicrobial activity and action of silver. Prog Med Chem. 1994;31:351–70.Google Scholar
67.
Eckhardt S, Brunetto PS, Gagnon J, Priebe M, Giese B, Fromm KM. Nanobio silver: its interactions with peptides and bacteria, and its uses in medicine. Chem Rev. 2013;113:4708–54.Google Scholar
68.
Marambio-Jones C, Hoek EM. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res. 2010;12:1531–51.Google Scholar
69.
Zhang X, Li Z, Yuan X, Cui Z, Bao H, Li X, et al. Cytotoxicity and antibacterial property of titanium alloy coated with silver nanoparticle-containing polyelectrolyte multilayer. Mater Sci Eng C Mater Biol Appl. 2013;33:2816–20.Google Scholar
70.
Diagne F, Malaisamy R, Boddie V, David Holbrook R, Eribo B, Jones KL. Polyelectrolyte and silver nanoparticle modification of microfiltration membranes to mitigate organic and bacterial fouling. Environ Sci Technol. 2012;46:4025–33.Google Scholar
71.
Guthrie KM, Agarwal A, Tackes DS, Johnson KW, Abbott NL, Murphy CJ, et al. Antibacterial efficacy of silver-impregnated polyelectrolyte multilayers immobilized on a biological dressing in a murine wound infection model. Ann Surg. 2012;256:371.Google Scholar
72.
Braydich-Stolle L, Hussain S, Schlager JJ, Hofmann M-C. In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol Sci. 2005;88:412–9.Google Scholar
73.
Sopjani M, Föller M, Haendeler J, Götz F, Lang F. Silver ion-induced suicidal erythrocyte death. J Appl Toxicol. 2009;29:531–6.Google Scholar
74.
Franklin TJ, Snow GA. Biochemistry of antimicrobial action, 3rd ed London: Chapman and Hall, 1981:217.Google Scholar
75.
Synowiecki J, Al-Khateeb NA. Production, properties, and some new applications of chitin and its derivatives. Crit Rev Food Sci Nutr. 2003;43:145–71.Google Scholar
76.
Muzzarelli R, Tarsi R, Filippini O, Giovanetti E, Biagini G, Varaldo PE. Antimicrobial properties of N-carboxybutyl chitosan. Antimicrob Agents Chemother. 1990;34:2019–23.Google Scholar
77.
Muzzarelli RAA, Boudrant J, Meyer D, Manno N, DeMarchis M, Paoletti MG. Current views on fungal chitin/chitosan, human chitinases, food preservation, glucans, pectins and inulin: a tribute to Henri Braconnot, precursor of the carbohydrate polymers science, on the chitin bicentennial. Carbohydr Polym. 2012;87:995–1012.Google Scholar
78.
Younes I, Rinaudo M. Chitin and chitosan preparation from marine sources. Structure, properties and applications. Mar Drugs. 2015;13:1133–74.Google Scholar
79.
Sudarshan NR, Hoover DG, Knorr D. Antibacterial action of chitosan. Food Biotechnol. 1992;6:257–72.Google Scholar
80.
Leuba S, Stossel P. Chitosan and other polyamines: antifungal activity and interaction with biological membranes. In: Muzzarelli RAA, Jeuniaux C, Gooday C, editors. Chitin in Nature and Technology. New York, NY, USA: Plenum Press, 1985:217.Google Scholar
81.
Choi BK, Kim KY, Yoo YJ, Oh SJ, Choi JH, Kim CY. In vitro antimicrobial activity of a chitooligosaccharide mixture against Actinobacillus actinomycetemcomitans and Streptococcus mutans. Int J Antimicrob Agent. 2001;18:553–7.Google Scholar
82.
Eaton P, Fernandes JC, Pereira E, Pintado ME, Malcata FX. Atomic force microscopy study of the antibacterial effects of chitosans on Escherichia coli and Staphylococcus aureus. Ultramicroscopy. 2008;108:1128–34.Google Scholar
83.
Rabea EI, Badawy ME, Stevens CV, Smagghe G, Steurbaut W. Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules. 2003;4:1457–65.Google Scholar
84.
Benhabiles MS, Salah R, Lounici H, Drouiche N, Goosen MFA, Mameri N. Antibacterial activity of chitin, chitosan and its oligomers prepared from shrimp shell waste. Food Hydrocolloid. 2012;29:48–56.Google Scholar
85.
Jeon YJ, Park PJ, Kim SK. Antimicrobial effect of chitooligosaccharides produced by bioreactor. Carbohydr. Polym. 2001;44:71–6.Google Scholar
86.
Rhoades J, Roller S. Antimicrobial actions of degraded and native chitosan against spoilage organisms in laboratory media and foods. Appl Environ Microbiol. 2000;66:80–6.Google Scholar
87.
Jung EJ, Youn DK, Lee SH, No HK, Ha JG, Prinyawiwatkul W. Antibacterial activity of chitosans with different degrees of deacetylation and viscosities. Int J Food Sci Tech. 2010;45:676–82.Google Scholar
88.
Friedman M, Juneja VK. Review of antimicrobial and antioxidative activities of chitosans in food. J Food Protect. 2010;73:1737–61.Google Scholar
89.
Hartmann H, Xiong X, Arefaine E, Gerhardts A, Höfer D, Krastev R. Antibakterielle Layer-by-Layer Beschichtung für Medizintextilien. BioNanoMaterials.Band 17:Seite 157 (Jahrestagung der Deutschen Gesellschaft für Biomaterialien DGBM, Aachen, 28.09.-01.10.2016).Google Scholar
90.
Gomes AP, Mano JF, Queiroz JA, Gouveia IC. Layer-by-layer deposition of antimicrobial polymers on cellulosic fibers: a new strategy to develop bioactive textiles. Polym Advan Technol. 2013;24:1005–10.Google Scholar
91.
Shirvan AR, Nejad NH, Bashari A. Antibacterial finishing of cotton fabric via the chitosan/TPP self-assembled nano layers. Fibers Polymers. 2014;15:1908–14.Google Scholar
92.
Wang Y, Hong Q, Chen Y, Lian X, Xiong Y. Surface properties of polyurethanes modified by bioactive polysaccharide-based polyelectrolyte multilayers. Colloids Surf B Biointerfaces. 2012;100:77–83.Google Scholar
93.
Lord MS, Cheng B, McCarthy SJ, Jung M, Whitelock JM. The modulation of platelet adhesion and activation by chitosan through plasma and extracellular matrix proteins. Biomaterials. 2011;32:6655–62.Google Scholar
94.
Bratskaya S, Marinin D, Simon F, Synytska A, Zschoche S, Busscher HJ, et al. Adhesion and viability of two enterococcal strains on covalently grafted chitosan and chitosan/κ-carrageenan multilayers. Biomacromolecules. 2007;8:2960–8.Google Scholar